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Abstract

The paradigm of pre-training and fine-tuning graph neural
networks has attracted wide research attention. In previous
studies, the pre-trained models are viewed as universally ver-
satile, and applied to a diverse range of downstream tasks. In
many situations, however, this practice results in limited or
even negative transfer. This paper, for the first time, studies
the specific application scope of graph pre-trained models, i.e.,
the extent to which downstream tasks can benefit from specific
pre-training tasks. We find that not all downstream tasks can
effectively benefit from a graph pre-trained model. In light of
this, we introduce the measure task consistency to quantify
the similarity between graph pre-training and downstream
tasks. This measure assesses the extent to which downstream
tasks can benefit from specific pre-training tasks. Moreover, a
novel fine-tuning strategy, Bridge-Tune, is proposed to further
diminish the impact of the difference between pre-training and
downstream tasks. The key innovation in Bridge-Tune is an
intermediate step that bridges pre-training and downstream
tasks. This step takes into account the task differences and
further refines the pre-trained model. The superiority of the
presented fine-tuning strategy is validated via numerous ex-
periments with different pre-trained models and downstream
tasks.

1 Introduction
The paradigm of pre-training and fine-tuning graph neural
networks (GNNs) has recently become an active research
area and is able to learn transferable knowledge from graph
data without costly labels (Hu et al. 2020b; Liu et al. 2022;
Rong et al. 2020; Qiu et al. 2020; Xu et al. 2023; Ma et al.
2023; Xu et al. 2022). This paradigm typically involves two
steps: (1) pre-train a GNN encoder on unlabeled graph data
via a pre-training task; (2) fine-tune the pre-trained GNN
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Figure 1: Plot of performance improvement versus the pro-
posed task consistency measure. It shows a clear positive
correlation: a larger task consistency implies higher improve-
ment, which in turn suggests that the downstream task can
benefit more from the pre-training task. Different points repre-
sent improvement on different downstream tasks and different
datasets. The black solid line is fitted via linear regression, and
the gray shaded area indicates the 95% confidence interval.

on unseen data so as to benefit different downstream tasks.
Such a design hopes to build a one-fits-all model that always
benefits the downstream.

However, this ideal expectation is far from the truth in real-
world scenarios. As demonstrated in Figure 1, the fine-tuned
GCC model (Qiu et al. 2020) suffers from negative transfer in
45.5% of downstream tasks tested, and the given pre-trained
model excels in some downstream tasks while underperforms
in others. (The improvement result is computed as the relative
difference in downstream performance between fine-tuned
GCC and GCC learned from scratch.) This undesirable phe-
nomenon is largely attributed to the difference between the
pre-training task and the downstream task; as also observed
in (Hu et al. 2020b; Lu et al. 2021; Ju et al. 2023).

In view of this, it is then crucial to examine in which case
the downstream benefits from the pre-trained model, which
in turn asks for a measure to quantify the similarity between a
pre-training task and a downstream task. Task similarity has
been studied in the literature, but is typically defined based
on label distributions (Ganin et al. 2016; Geng 2016; Chen



et al. 2020). These approaches are not applicable in our case
because graph pre-training is conducted on unlabeled data.
What’s worse, the pre-training and downstream tasks are often
defined on different spaces or have distinct objectives, which
makes the comparison more difficult.

Considering the above practical needs and challenges,
this paper proposes a novel measure of task consistency to
quantify the similarity between various graph pre-training
and downstream tasks within a unified space. Specifically, we
introduce a pair-wise label space that is able to encompass
different pre-training and downstream tasks even if they are
originally defined in different ways. With this novel pair-wise
label space, the task consistency measure is then proposed
to identify those downstream tasks that might benefit from a
given graph pre-trained model, as demonstrated in Figure 1.

For those downstream tasks that can potentially make
good use of a given pre-trained model, the next question
is how to diminish the impact of task inconsistency so as
to better leverage the knowledge in the pre-trained model.
In this case, the proposed task consistency measure is not
helpful: The difference between two tasks is intrinsic and is
not altered in any learning process. To resolve this difficulty,
we introduce the concept of representation consistency and a
novel fine-tuning strategy Bridge-Tune.

The first step is to modify the task consistency measure to
take into account the representations learned by the pre-trained
model. Such a measure is called representation consistency,
and can be viewed as a soft version of the task consistency
measure. It is able to quantify the contribution of the learned
representations to downstream tasks, and is used to guide the
refinement of the pre-trained model.

Second, with the proposed representation consistency, we
develop a novel fine-tuning strategy, Bridge-Tune. The key
innovation in Bridge-Tune is an intermediate step between pre-
training and downstream. This process is called pre-trained
model refinement, and aims to maximize the proposed rep-
resentation consistency. The effectiveness of Bridge-Tune is
illustrated in Figure 2. The traditional fine-tuning easily falls
into a suboptimal point in the downstream task. In compari-
son, the pre-trained model refinement step helps find a better
starting point for fine-tuning and so Bridge-Tune potentially
builds a better model for the downstream task.

Our contributions are summarized as follows.
• New measure. We propose a task consistency measure to

quantify the potential benefits gained by the downstream
task from a graph pre-trained model.

• New method. We introduce Bridge-Tune, a novel fine-
tuning strategy. Instead of directly fine-tuning a pre-trained
model, Bridge-Tune takes an intermediate step that bridges
the pre-training and downstream tasks and refines the model
representations.

• Theoretical guarantees and numerical results. The effec-
tiveness of Bridge-Tune is verified via theoretical analysis
and demonstrated by numerical experiments. In particular,
the superiority of Bridge-Tune is justified with different
choices of pre-trained models and downstream tasks.

The rest of the paper is organized as follows. The classical
paradigm of GNN pre-training and fine-tuning is reviewed
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Figure 2: Illustration of the optimization process in traditional
fine-tuning (blue) and our fine-tuning strategy (red). The arrow
from one (solid) curve to another indicates a change in tasks,
and the arrow along one curve represents the optimization
process.

in §2. In §3 we introduce the measure of task consistency to
quantify the similarity between pre-training and downstream
tasks. Then §4 unveils the proposed novel fine-tuning strategy,
Bridge-Tune. Numerical experiments in §5 demonstrate the
superiority of our approach across various settings.

2 Preliminaries
In this section, we introduce the basic paradigm of graph
pre-training. It typically consists of two steps: pre-training
and fine-tuning. First, given a collection of unlabeled graphs
𝐺pre, we pre-train a generic GNN encoder 𝑓𝜃 by optimizing
the self-supervised learning objective Lpre:

𝜃pre-train = argmin
𝜃

Lpre
(
𝑓𝜃 ;𝐺pre

)
.

The learned parameter 𝜃pre-train is expected to capture unified
and transferable structural patterns in the training graphs. The
choice of Lpre relies on the pre-training task, and this paper
focuses on the following three: graph contrastive learning,
graph reconstruction and graph context prediction.

Graph Contrastive Learning. The goal of contrastive pre-
training task is to capture the similarities (and dissimilarities)
between subgraph instances (You et al. 2020; Qiu et al. 2020;
Zheng et al. 2022). Specifically, given a subgraph instance 𝜉𝑖
from an ego network Γ𝑖 centered at the node 𝑣𝑖 , we could get
its representation 𝑥𝑖 = 𝑓 (𝜉𝑖) via the graph encoder 𝑓 . The
encoder 𝑓 aims to encourage high similarity between 𝑥𝑖 and
the representations of another subgraph instance 𝜉+

𝑖
which is

sampled from the same ego network. This work could be done
through optimizing the InfoNCE loss (Oord, Li, and Vinyals

2018): Lpre = − log 𝑒
𝒙⊤
𝑖
𝑓 ( 𝜉+𝑖 )/𝜏

𝑒
𝒙⊤
𝑖
𝑓 ( 𝜉+𝑖 )/𝜏+∑𝜉 ′

𝑖
∈Ω−

𝑖
𝑒
𝒙⊤
𝑖
𝑓 ( 𝜉 ′𝑖 )/𝜏 , where Ω−

𝑖

denotes the collection of subgraph instances that sampled
from different ego networks Γ 𝑗 ( 𝑗 ≠ 𝑖) and 𝜏 denotes a pre-
defined hyper-parameter. The inner product here denotes the
similarity measure between the two subgraph instances.

Graph Reconstruction. Graph autoencoder is another pop-
ular approach for GNN pre-training, and utilizes graph re-
construction as self-supervised tasks (Hamilton, Ying, and
Leskovec 2017). The main objective of the graph encoder 𝑓 in
graph reconstruction is to encourage high similarity between



connected node pairs and low similarity between unconnected
node pairs: Lpre = − log𝜎

(
ℎ⊤𝑢 ℎ𝑣

)
− log

(
1 − 𝜎(ℎ⊤𝑢 ℎ𝑣′ )

)
,

where 𝑣 is connected to 𝑢 but disconnected to 𝑣′, ℎ𝑢 denotes
the representation of node 𝑢, and 𝜎(·) is the sigmoid function.

Graph Context Prediction. Graph context prediction aims
to leverage subgraphs to make predictions about the sur-
rounding graph structures (namely, context graph) (Hu et al.
2020b), by classifying whether a particular neighborhood
and a context graph belong to the same node within a
𝐾-hop neighborhood. The objective can be formulated as
Lpre = − log𝜎(ℎ⊤𝑣 𝑐𝑣) −

∑
𝑣′∼Ω−𝑣 log

(
1 − 𝜎(ℎ⊤𝑣 𝑐𝑣′ )

)
, where

Ω−𝑣 is the set of nodes excluding node 𝑣, and ℎ
(𝐾 )
𝑣 and

𝑐𝑣 are representations of 𝐾-hop neighborhood and context
graph of node 𝑣.

Second, in the fine-tuning stage, the GNN model (initialized
with the pre-trained parameters 𝜃pre-train) is trained on the
loss of downstream task Ldown end-to-end together with the
classifier on the downstream task. Recent works focus on how
to make the most use of the knowledge in pre-trained models
during the fine-tuning phase, they can be categorized into
parameter regularization (Xuhong, Grandvalet, and Davoine
2018) and representation regularization (Li et al. 2019; Chen
et al. 2019; Kou et al. 2020; Flamary et al. 2016; Xu et al.
2020). In the graph domain, some efforts have been also made
to develop better fine-tuning strategies. (Zhang et al. 2022)
adapts the optimal transport to constrain the fine-tuned model
behaviors, which is a kind of representation regularization.
(Xia et al. 2022) uses a regularization built on dropout to
control the complexity of pre-trained models. Although there
are various forms of fine-tuning, it is evident that a gap exists
between the learning objectives of the pre-training task and
the downstream task.

3 Measure Task Similarity
This section presents a measure to quantify the similarity
between pre-training and downstream tasks. We begin to
introduce a pair-wise label space to relocate these two tasks
in a common space in §3.1, and then our proposed measure
of task consistency is presented in §3.2.

3.1 Pair-Wise Label Space
Graph pre-trained models cannot retain competitive perfor-
mance across all downstream tasks, as significant difference
exists between pre-training and downstream tasks. Specifi-
cally, the pre-training task typically works on the representa-
tion space: By mapping the input data to representations, it
attempts to optimize the (dis)agreement of node representa-
tions. In comparison, the downstream task is often defined
on the label space, aiming to classify the downstream data.

To facilitate the comparison of these tasks, we introduce
a new label in both pre-training and downstream tasks. The
presented new label is applied to a pair of nodes, and with this
definition, the tasks in graph pre-training and downstream
can be converted into the same pair-wise label space.
Definition 1 (Pair-wise label space). Given two samples 𝑣𝑖 , 𝑣 𝑗
and their respective labels 𝑦(𝑣𝑖), 𝑦(𝑣 𝑗 ), the label of the node
pair (𝑣𝑖 , 𝑣 𝑗 ) is defined as

𝑦∗ (𝑣𝑖 , 𝑣 𝑗 ) = 1(𝑦(𝑣𝑖) = 𝑦(𝑣 𝑗 )), (1)
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Figure 3: Illustrating example of the pair-wise label space and
the measure of task consistency. Consider node classification
as a downstream task, originally defined in the label space, a
node pair comprising nodes with different labels are labeled
as 0 in the pair-wise label space. Take contrastive learning as
the pre-training task, a node pair comprising nodes distinct
nodes are labeled as 0 in the pair-wise label space. Based on
the shared pair-wise label space, the task consistency can be
defined to measure the probability of the labels of node pairs
being the same in both tasks.

where 1(·) is the indicator function. The pair-wise label
space Y∗ consists of all the labels 𝑦∗ (𝑣𝑖 , 𝑣 𝑗 ).

With Definition 1, a variety of pre-training and downstream
tasks can be represented in the pair-wise label space. As an
example, node classification in the pair-wise label space
sets 𝑦∗ (𝑣𝑖 , 𝑣 𝑗 ) = 1 if 𝑣𝑖 and 𝑣 𝑗 have the same label. The
conversion of link prediction into the pair-wise label space is
also straightforward: 𝑦∗ (𝑣𝑖 , 𝑣 𝑗 ) = 1 if a link exists between
node 𝑣𝑖 and 𝑣 𝑗 , and 𝑦∗ (𝑣𝑖 , 𝑣 𝑗 ) = 0 otherwise.

For pre-training tasks, we study three self-supervised learn-
ing approaches and convert them to the pair-wise label space.

• Graph Contrastive Learning. Contrastive learning can be
viewed as an instance discrimination task, where each
instance is treated as a distinct class of its own (Wu et al.
2018). Accordingly, the label of a node pair in contrastive
learning can be defined as 𝑦∗ (𝑣𝑖 , 𝑣 𝑗 ) = 0 if 𝑣𝑖 ≠ 𝑣 𝑗 .

• Graph Reconstruction. Graph reconstruction aims to recon-
struct the existence of links between node pairs. Hence, the
labels of node pairs in this task can be naturally defined
as 𝑦∗ (𝑣𝑖 , 𝑣 𝑗 ) = 1 if a link exists between 𝑣𝑖 and 𝑣 𝑗 , and 0
otherwise.

• Graph Context Prediction. Graph context prediction is
originally a graph-level task, and aims to determine whether
a specific neighborhood and a context graph correspond
to the same node (Hu et al. 2020b). Roughly speaking,
if two nodes are located close enough within 𝐾-hops of
each other, their neighborhoods and context graphs are
considered similar enough. Based on this relaxation, graph
context prediction can be converted to a node-level task:
𝑦∗ (𝑣𝑖 , 𝑣 𝑗 ) = 1 if (𝑣𝑖 , 𝑣 𝑗 ) are within 𝐾-hops of each other,
and 𝑦∗ (𝑣𝑖 , 𝑣 𝑗 ) = 0 otherwise.

Figure 3 presents an illustrating example of converting con-
trastive learning and node classification into the pair-wise
label space.



3.2 Task Consistency
After converting pre-training and downstream tasks to the
same pair-wise label space, we introduce the measure task
consistency to quantify the similarity between these tasks.
Definition 2 (Task consistency). Given a pre-training task P
and a downstream task D, denote by Y∗D its pair-wise label
space on the downstream task and by Y∗P its pair-wise label
space on the pre-training task. The task consistency of the
downstream taskD with the pre-training task P is defined by

CT (D,P) = P[𝑦∗D (𝒏) = 𝑦
∗
P (𝒏)], (2)

where VD is the space of nodes in the downstream graph,
and 𝒏 ∈ VD ×VD is a node pair taken from the downstream
graph.

Figure 3 presents an illustrating example of how task con-
sistency is computed when the pre-training task is contrastive
learning and the downstream task is node classification. To-
wards an empirical verification of task consistency, Figure 1
clearly presents a positive correlation between the task con-
sistency and the performance improvement on downstream
tasks brought by pre-trained model (see experiment details
in Appendix A.2). The larger the task consistency of a down-
stream task, the more benefit the task can benefit from the
pre-trained model. It is also significant that those downstream
tasks with low task consistency suffer from negative transfer.
This provides us with the rationality to leverage task consis-
tency to determine the extent to which downstream tasks can
benefit from specific graph pre-trained models.

The following theorem builds a theoretical connection
between the proposed task consistency and the generalization
ability from a pre-training task to a downstream task. Its proof
is postponed to Appendix A.5.
Theorem 1 (Connection between generalization error and
task consistency). Let P and D be the pre-training task and
the downstream task, defined on a shared pair-wise label
space. Let CT (D,P) be the task consistency between P and
D, let S be an infinite hypothesis set, and let 𝑅(𝑠) be the
generalization error of a hypothesis 𝑠 ∈ S on D. Then, for
any 𝛿 > 0, the following inequality holds with probability at
least 1 − 𝛿:

𝑅(𝑠) ≤ log( |S|/𝛿)
𝑚CT (D,P)

.

4 Bridge-Tune Enhances Downstream
The proposed task consistency measure reveals which down-
stream tasks can benefit from specific graph pre-trained
models. Building upon this finding, this section introduces
a novel fine-tuning strategy that aims at maximizing the uti-
lization of pre-trained models to enhance downstream task
performance. This is achieved by mitigating the impact of the
difference between pre-training and downstream tasks.

Towards this purpose, in §4.1, drawing inspiration from task
consistency, we introduce a measure called representation
consistency to monitor the impacts of model representations
on the downstream tasks during the fine-tuning process.
Subsequently, we unveil our novel wisdom of fine-tuning
strategy, termed Bridge-Tune.

4.1 Representation Consistency
To diminish the impact of task inconsistency during fine-
tuning, further improvement on the graph pre-trained model
should be made. However, the proposed task consistency is an
intrinsic property of the two tasks, so cannot help to further the
pre-trained model. In view of this, representation consistency
is proposed to guide the refinement of the pre-train model. It is
a soft version of the task consistency measure, and quantifies
the contribution of model representations to the downstream.
Definition 3 (Representation consistency). Given the output
representation space H of the graph pre-training model,
the downstream task D, and the pre-training task P, the
representation consistency is defined as

CR (H ,D,P) = E𝒏 [𝜌Sim(ℎ(𝒏)) |𝑦∗D (𝒏) = 𝑦
∗
P (𝒏)], (3)

where 𝒏 is a random node pair fromVD ×VD , 𝜌 is a binary
indicator (with 𝜌 = 1 if 𝑦∗P (𝒏) = 𝑦∗D (𝒏) = 1 and −1 if
𝑦∗P (𝒏) = 𝑦

∗
D (𝒏) = 0), ℎ : VD ×VD →H ×H is a mapping

from node pair to representation pair, and Sim(·) is the cosine
similarity.

The introduction of Sim(ℎ(𝒏)) in (3) is inspired by the
observation that for a downstream graph, if nodes with similar
(dissimilar) representations also exhibit the same (different) la-
bels, fine-tuning is more likely to maximize the potential of the
pre-trained model. Moreover, the representation consistency
CR can be viewed as a soft version of the task consistency CT:
If 𝑦∗D (𝒏) = 𝑦∗P (𝒏), then CR = E[𝜌Sim(ℎ(𝒏))] ≤ 1 = CT.
Further discussion on representation consistency, especially
its theoretical connection with some other existing measures
(e.g., inter-class distance), can be found in Appendix A.5.

4.2 Our Fine-Tuning Strategy
Motivated by the intuition that a larger representation con-
sistency is more desirable for the downstream, we present in
this section a novel fine-tuning strategy, Bridge-Tune, which
introduces an intermediate task between pre-training and
traditional fine-tuning and further improve downstream per-
formance.

Given a graph pre-trained model, Bridge-Tune consists of
two stages: (1) Pre-trained model refinement: We maximize
the empirically computed representation consistency. This
stage acts as an intermediate task between pre-training and tra-
ditional fine-tuning. (2) Downstream fine-tuning: We conduct
traditional fine-tuning, in which the graph model is initialized
with the learned parameters of the refined pre-trained model.

Two challenges exist during the refinement process. Com-
putation of the empirical representation consistency needs
node labels from the downstream task. However, in many
cases, part of the downstream labels are inaccessible, making
refinement loss computation difficult. Besides the lack of
downstream labels, computing refinement loss is expensive as
it involves all pairs of nodes. Thus, the computation efficiency
is another concern for our Bridge-Tune model. We tackle
these two problems below.
Better estimation of refinement loss. During fine-tuning,
only part of the label set is accessible (call it𝒀L); the remaining
part 𝒀U is inaccessible and needs to be predicted. With only



the labeled part of the downstream data, the estimation of
representation consistency is far from accurate. We now
propose an improved approach for estimating refinement loss.
The key insight is that if an unlabeled node is predicted
by the downstream classifier with high confidence during
downstream fine-tuning, its prediction can serve as an addition
to enhancing the estimation of refinement loss during pre-
trained model refinement. In view of this, the two stages are
suggested to be performed in a progressive and iterative way
as below.

Step 1 (Pre-trained model refinement). The graph encoder
model is further trained to maximize the refinement loss on
the downstream graph. The update at 𝑡-th iteration is

𝜃
(𝑡 )
refine = argmax

𝜃

Lrefine

(
𝑓𝜃 ;𝒀L ∪ 𝒀 (𝑡 )P

)
,

where Lrefine is the refinement loss (i.e., the computed rep-
resentation consistency), 𝑓 is the graph encoder, 𝒀 (𝑡 )

𝑃
is the

predictions of unlabeled nodes given by the downstream
classifier, and we set 𝒀 (0)

𝑃
= ∅. This optimization process is

initialized at 𝜃 = 𝜃 (𝑡 )down at each iteration (see step 2), and we
take 𝜃 (0)down = 𝜃pre-train.

Step 2 (Downstream fine-tuning). In this step, the graph
encoder 𝑓 is initialized with 𝜃 (𝑡 )refine, and trained end-to-end
together with the downstream classifier 𝑔 (parameterized by
𝜙
(𝑡 )
down) on a downstream task:

(𝜃 (𝑡+1)down , 𝜙
(𝑡+1)
down ) = argmin

𝜃,𝜙

Ldown
(
𝑓𝜃 , 𝑔𝜙;𝒀L

)
,

𝒀 (𝑡+1)P = 𝑔
𝜙
(𝑡 )
down
◦ 𝑓

𝜃
(𝑡 )
down
(𝐺down),

where Ldown is the loss of the downstream task, and 𝑔 ◦ 𝑓 =
𝑔( 𝑓 (·)) denotes the composition, and Y𝑃 is the predictions
of unlabeled nodes. For efficiency concerns, the optimization
process in the first line is initialized at (𝜃, 𝜙) = (𝜃 (𝑡 )refine, 𝜙

(𝑡 )
down).

Steps 1 and 2 are performed iteratively. By doing this,
pre-trained model refinement and downstream fine-tuning
mutually boost the capability of each other, ultimately boost-
ing the downstream performance.
Efficiency improvement. The computation of refinement
loss requires all node pairs, thus leading to a high compu-
tation cost. To improve efficiency, we propose to sample
two specific categories of critical node pairs. (1) The first
category involves node pairs in which either one or both
nodes possess labels or high-confidence predictions. They are
deemed reliable for learning and can accelerate the training
process. This set of node pairs forms 𝑃certain. (2) The second
category includes node pairs where one node is reliable (i.e.,
labeled or predicted with high confidence) and the other is
the downstream classifier uncertain with. In this way, the
information in the reliable nodes can diffuse to unlabeled
nodes with low prediction confidence. This set of node pairs
constitutes 𝑃uncertain.

Given the above two node pair sets, we argue that different
node pairs should be paid with different attention during
the fine-tuning phase proceeds. Initially, the predictions of

the downstream classifier may not be accurate enough, in
which case we focus on 𝑃certain. As the fine-tuning phase
proceeds, we can gradually trust the predictions provided
by the downstream classifier, and add 𝑃uncertain to estimate
refinement loss while paying less attention to labeled node
pairs.

In view of this, a time-varying strategy is developed to
assign weights to different node pairs. Specifically, the weight
of a node pair (𝑣𝑖 , 𝑣 𝑗 ) at 𝑡-th iteration is 𝑎𝑖 𝑗 = cos( 𝜋𝑡2𝑇 )𝑝𝑖 𝑝 𝑗 ,
if (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝑃certain and 𝑎𝑖 𝑗 = sin( 𝜋𝑡2𝑇 )𝑝𝑖 (1−𝑝 𝑗 ), if (𝑣𝑖 , 𝑣 𝑗 ) ∈
𝑃uncertain, where 𝑝𝑖 and 𝑝 𝑗 are the probabilities of sampling
node 𝑣𝑖 and 𝑣 𝑗 respectively, and 𝑇 is the total number of
iterations.

Finally, the refinement loss at 𝑡-th iteration is computed as

Lrefine =
∑

(𝑣𝑖 ,𝑣 𝑗 ) ∈𝑃certain∪𝑃uncertain

𝑎𝑖 𝑗 𝜌Sim( 𝑓 (𝑣𝑖), 𝑓 (𝑣 𝑗 ))1(𝑦∗D (𝑣𝑖 , 𝑣 𝑗 )= 𝑦
∗
P (𝑣𝑖 , 𝑣 𝑗 )).

Theoretical analysis. Finally, we theoretically demonstrate
that pre-trained model refinement can achieve a lower classifi-
cation loss on the downstream task than traditional fine-tuning.
Theorem 2 (informal). Under certain theoretical assump-
tions, the loss for the downstream task Ldown (𝜃refine) ≤
Ldown (𝜃pre-train), where 𝜃refine is the model parameter after
pre-trained model refinement and 𝜃pre-train is the pre-trained
model parameter.

The formal statement of Theorem 2 as well as the proof
can be found in Appendix A.5.

5 Experiments
In the experiments, we evaluate the performance of Bridge-
Tune with different pre-trained models and on different down-
stream tasks. We present our setup in §5.1, and the comparison
results in terms of performance in §5.2. Additional experi-
mental results are presented in Appendix A.4. Our codes are
available at https://github.com/zjunet/Bridge-Tune.

5.1 Experimental Setup
Datasets. We use a total of 12 downstream datasets for eval-
uation: US-Airport, Brazil-Airport, Europe-Airport, H-index,
Wisconsin, Texas, Cora, Cornell, DD242, DD68, DD687, and
the large-scale dataset Ogbarxiv. Since our focus is not on
the pre-training stage, in the experiments we directly use the
graph pre-trained models that have already been trained on
their corresponding datasets.
Baselines. A total number of 13 baselines are considered
in the experiments, and they can be roughly categorized
into three groups: naïve fine-tuning, advanced fine-tuning,
and prompt-tuning. For naïve fine-tuning, we compare with
(1) Fine-tune: graph encoder initialized with pre-trained
parameters is trained end-to-end with downstream classifier;
(2) Freeze: graph encoder’s parameters are frozen during
fine-tuning; and (3) Rand: graph encoder is learning from
scratch. For advanced fine-tuning, we compare with (1)
L2_penalty, L2_SP and L2_SP_Fisher (Xuhong, Grandvalet,
and Davoine 2018): parameter regularization-based models;
(2) DELTA, DELTA w/o Att (Li et al. 2019) and GTOT (Zhang
et al. 2022): representation regularization-based models; (3)



Model Dataset US-Airport Brazil-Airport Europe-Airport H-index Wisconsin Texas DD242 DD68 DD687 Cornell Cora Ogbarxiv

Task consistency 0.249 0.245 0.248 0.501 0.321 0.370 0.075 0.081 0.067 0.370 0.179 0.077
Fine-tune 66.21(4.23) 73.24(11.60) 58.62(7.35) 81.90(1.59) 59.82(7.69) 63.95(8.67) 14.49(2.94) 12.39(3.74) 8.26(4.16) 48.04(5.94) 29.54(1.44) 18.62(1.92)
Freeze 63.78(5.11) 69.31(14.02) 53.43(7.57) 74.88(0.97) 53.39(8.47) 62.31(10.80) 14.79(3.17) 12.77(4.46) 11.31(2.74) 47.57(5.65) 29.98(1.82) 14.56(7.60)
Rand 63.44(3.22) 71.73(13.56) 57.35(4.72) 81.21(1.62) 56.89(8.11) 59.70(12.75) 12.31(2.17) 13.81(3.12) 11.18(3.25) 50.82(3.27) 29.80(1.74) 18.61(1.88)
L2_penalty 64.63(2.31) 67.60(11.93) 55.38(5.37) 79.88(0.75) 55.84(7.62) 56.33(3.46) 16.59(2.28) 12.26(2.80) 8.98(3.60) 42.54(10.81) 31.68(0.84) 19.27(0.21)
L2_SP 63.70(3.73) 67.02(8.42) 54.41(5.53) 78.56(1.97) 53.43(5.53) 56.95(8.59) 13.71(2.07) 9.16(2.19) 7.04(2.03) 36.49(8.95) 36.60(3.22) 19.28(0.17)
L2_SP_Fisher 64.71(3.94) 71.25(12.42) 57.14(4.81) 80.32(1.44) 57.71(6.52) 60.76(13.11) 19.32(3.83) 13.54(4.25) 8.97(2.09) 44.30(5.80) 43.28(2.21) /
DELTA 63.37(3.13) 62.56(11.56) 55.95(6.23) 75.42(1.02) 55.39(4.31) 56.36(9.82) 14.57(2.78) 11.62(2.77) 9.93(3.00) 45.35(5.95) 39.33(2.09) /
DELTA w/o Att 62.70(1.84) 62.78(1.60) 53.18(7.08) 72.04(2.17) 55.36(5.94) 64.06(6.32) 14.72(1.73) 9.81(3.18) 7.86(3.85) 47.40(9.43) 37.26(1.48) 19.34(0.13)
GTOT 65.82(3.81) 74.60(14.10) 58.43(4.93) 81.00(1.36) 54.14(6.14) 62.95(7.99) 20.33(3.33) 14.45(2.26) 8.28(2.49) 45.91(8.82) 44.13(2.33) 19.32(0.16)
SupCon 66.56(4.18) 76.21(13.15) 59.88(6.67) 81.00(1.47) 60.60(8.20) 67.28(7.83) 14.88(1.77) 9.54(3.69) 7.17(1.71) 37.69(11.29) 35.42(3.13) 19.36(0.31)
L2P 55.90(3.80) 68.43(16.48) 57.51(4.20) 80.82(1.43) 59.37(9.04) 62.32(4.26) 9.15(2.68) 8.59(1.41) 7.26(2.67) 27.89(15.97) 28.97(3.55) 19.13(0.35)
GPPT 64.03(4.13) 65.66(13.82) 53.12(9.00) 74.66(1.90) 47.42(5.22) 57.90(7.46) 13.63(1.31) 10.83(2.98) 6.35(3.20) 43.60(11.57) 35.45(1.43) 19.85(0.19)
GraphPrompt 62.86(5.90) 60.99(16.06) 50.35(10.46) 73.40(1.85) 51.40(7.27) 59.06(7.59) 13.79(1.83) 11.75(3.00) 5.93(2.40) 39.83(8.19) 36.52(1.97) 19.78(0.25)
Bridge-Tune 68.99(4.96) 77.86(13.95) 61.88(5.22) 82.66(0.96) 62.23(8.44) 70.00(5.82) 22.97(2.64) 16.00(5.60) 12.82(4.14) 50.32(9.37) 44.17(3.37) 20.49(4.35)

Table 1: Micro F1 scores of different fine-tuning strategies on pre-trained GCC model under the downstream task of node
classification. The notation “/” means out of memory or no convergence for more than three days. The p-values comparing
our model with competitive baseline GTOT are much smaller than 0.05, which indicates our model significantly outperforms
baselines.

SupCon (Khosla et al. 2020): a supervised contrastive learning
method, which can also be adopted during fine-tuning; (4)
L2P (Lu et al. 2021): While not exactly a fine-tuning strategy
as it adjusts the pre-training stage to benefit downstream, we
include it for a comprehensive comparison; Note that except
for GTOT and L2P, the other baselines are originally designed
for convolutional neural networks, so we adapt them to our
settings by changing the backbone model to the GNN used
in our framework. For prompt-tuning, we compare with
GPPT (Sun et al. 2022a) and GraphPrompt (Liu et al. 2023b).
Settings. We fine-tune on a variety of graph pre-trained
models: GCC, GraphCL, EdgePred, and ContextPred. We set
the learning rate as 5, 0.1, 0.1, 0.1 when fine-tuning GCC (Qiu
et al. 2020), GraphCL (You et al. 2020), EdgePred (Hamilton,
Ying, and Leskovec 2017), and ContextPred (Hu et al. 2020b)
respectively. We utilize mini-batch training and the batch size
is 32. The total iterations of fine-tuning is 30, alternating
between one iteration of pre-trained model refinement and one
iteration of downstream fine-tuning. When defining 𝑃certain,
we regard nodes with prediction confidence higher than 0.5
as high-confidence nodes. The numbers reported in all the
experiments are the mean and standard deviation over 10
trials. More details can be found in Appendix A.4.
5.2 Experimental Results
Comparison: fine-tuning baselines. Table 1 presents the
node classification performance after fine-tuning on the graph
pre-trained model GCC. Our model beats the best baseline
by an average of +4.68%. In contrast, advanced fine-tuning
baselines often cannot help fine-tuning, and even perform
worse than directly fine-tuning the models (i.e., the naïve fine-
tuning strategies). One possible reason is that most baselines
simply focus on regularizing the parameters and represen-
tations, and thus cannot essentially diminish the impact of
task difference. The unsatisfactory results of SupCon suggest
that those methods tailored for supervised learning might
not be suitable in “pre-train and fine-tune” paradigm. Recent

Node Classification Link Prediction

GCC

Task consistency 0.249 0.980
GTOT 65.82(3.81) 90.76(0.12)

Bridge-Tune 68.99(4.96) 94.97(0.35)
improvement 4.82% ↑ 4.64% ↑

GraphCL

Task consistency 0.249 0.980
GTOT 59.58(3.13) 63.81(2.37)

Bridge-Tune 60.50(2.84) 65.71(1.80)
improvement 1.54% ↑ 2.98% ↑

EdgePred

Task consistency 0.242 1.000
GTOT 61.09(6.63) 62.46(1.87)

Bridge-Tune 61.34(2.03) 63.15(1.20)
improvement 0.41% ↑ 1.10% ↑

ContextPred

Task consistency 0.292 0.103
GTOT 60.72(2.58) 64.54(2.52)

Bridge-Tune 61.86(2.47) 65.29(0.98)
improvement 1.88% ↑ 1.16% ↑

Table 2: Micro F1 on different downstream tasks (in columns),
given different pre-trained models (in rows) and on dataset
US-Airport.

prompt-tuning approaches also fall short, possibly because
they assume pre-training and fine-tuning are conducted on
the same dataset.
Comparison: different pre-trained models and down-
stream tasks. We also conduct experiments using different
pre-trained models and on various downstream tasks. Due
to space limitations, we only report the comparison between
our model and the best baseline GTOT. The results in Table 2
show that our model achieves a significant improvement under
various scenarios. More results and details can be found in
Appendix A.4.
Ablation study. To demonstrate the effectiveness of each
component in our model, we conduct ablation studies on



(1) Bridge-Tune-𝑎, which removes the time-varying strategy;
(2) Bridge-Tune-P, which does not consider predictions of
unlabeled nodes when estimating refinement loss. The Micro
F1 score of node classification for Bridge-Tune, Bridge-Tune-
𝑎, Bridge-Tune-P, fine-tuned on GCC on US-Airport dataset
is 68.99%, 67.25% and 68.32% respectively. The superiority
of Bridge-Tune compared with Bridge-Tune-𝑎 and Bridge-
Tune-P highlights the importance of time-varying strategy
and our estimation of refinement loss.
Case study. To examine whether the proposed pre-trained
model refinement can help diminish the impact of the differ-
ence between pre-training and downstream tasks, we conduct
the following analysis. Figure 4 presents the distribution of
pre-trained representation similarity of two nodes in negative
pairs. We adopt the pre-trained model GCC on the node clas-
sification task on US-Airport. The red (or blue) distribution
records the similarity distribution of negative pairs whose two
nodes are (or are not) from the same class in downstream task.
We first observe a significant difference between pre-training
and downstream task: As shown in Figure 4(a), We observe
that the similarity distributions of negative pairs within the
same class (in red) and across different classes (in blue) in
the downstream task are indistinguishable. Then, we can see
that our pre-trained model refinement indeed helps diminish
the task difference: these two distributions are pulled apart in
Figure 4(c). We also note that traditional fine-tuning is less
distinctive than ours in diminishing the task difference (see
Figure 4(b)). Additional results can be found in Appendix A.4.
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mean difference: 0.1524 mean difference: 0.2852 mean difference: 0.6558

Figure 4: The distribution of representation similarity (cosine
similarity) of two nodes in negative pairs. The red (or blue)
distribution records the similarity distribution of negative
pairs whose two nodes are (or not) from the same class in
downstream task. The means are shown in dashed vertical
lines.

6 Related Work
Graph fine-tuning strategy. Various fine-tuning strategies
have been proposed recently, and most research works con-
centrate on the image and text domains. These works can be
roughly categorized into parameter regularization (Xuhong,
Grandvalet, and Davoine 2018) and representation regulariza-
tion (Li et al. 2019; Kou et al. 2020; Flamary et al. 2016; Xu
et al. 2020). However, due to the special structure of graph
data, these methods are not directly applicable in the graph
domain. Fine-tuning in the graph domain is a promising, yet
largely unexplored, research direction. Zhang et al. (2022)
adapts representation regularization to graph domain, and the
regularizer is inspired by some distances in optimal transport.
Though the performance is promising, the use of optimal
transport requires a high computational cost, thus not appli-
cable for large-scale models. As another example, Xia et al.
(2022) focuses on molecular graphs, and proposes a new

regularization tailored to pre-trained molecular model, but
this approach can only be applied to molecular graphs.

As a newly developed research direction, prompt-tuning
has attracted considerable attention recently. It designs and
refines prompts to guide the behavior of pre-trained models
towards specific downstream tasks (Liu et al. 2023a). Moti-
vated by this research trend, graph prompt-tuning has received
growing research attention. In the context of graph domain,
GPPT (Sun et al. 2022a) proposes task token and structure
token as prompt template for the node classification applica-
tions. GraphPrompt (Liu et al. 2023b) employs a learnable
prompt to actively guide downstream tasks using task-specific
aggregation. These methods focus on link prediction as the
pre-training task and node classification as the downstream
task. It is not straightforward to extend these techniques to
different tasks, which largely limits their application scope.
A very recent paper (Sun et al. 2023) introduces a prompt
approach to match various pre-training strategies, but it still
lacks explicit consideration of the difference between the
pre-training and downstream tasks.

Another line of research, though focusing on the pre-
training phase, also attempts to improve downstream per-
formance (Han et al. 2021; Lu et al. 2021). They propose
to incorporate auxiliary tasks during pre-training phase so
that the pre-trained model is more amenable when adopted
to downstream. However, the inclusion of auxiliary tasks
potentially compromises the pre-trained model’s capacity to
generalize across various downstream tasks.
Task similarity. Task similarity refers to the similarity
between two machine learning tasks. The research on task
similarity was initiated by scholars in the computer vision
field, and is used to further improve model performance.
Taskonomy (Zamir et al. 2018) delves into the relationship
between visual tasks by employing task affinity normalization.
Task2vec (Achille et al. 2019) introduces a method to generate
task representations. A few follow-up studies apply Task2vec
to the graph domain. One such work is GraphGym (You,
Ying, and Leskovec 2020), which calculates task similarity by
training a collection of anchor models. All the aforementioned
works, however, work on supervised tasks, and thus are not
applicable to graph pre-training with unlabeled data.

7 Conclusion
We introduce the task consistency measure to quantify the sim-
ilarity between the graph pre-training and downstream tasks.
Such a measure indicates the extent to which a downstream
task can benefit from a given pre-training task. Moreover,
to diminish the potential impact of task inconsistency, a
novel fine-tuning strategy, Bridge-Tune, is proposed, in which
the key step aims to mitigate the distinction between the
pre-training and downstream tasks. The proposed concepts
are theoretically justified, and extensive experiments suggest
the superiority of Bridge-Tune on various pre-trained GNN
models and downstream tasks.
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A Research Methods
A.1 Notations
The main notations can be found in the following table.

Notation Description

𝐺down, 𝑉 , 𝐸 The downstream dataset, and corresponding node set and edge
set

P , D The pre-training task and the downstream task
CT , CR The task consistency and representation consistency
Y, 𝑦 The label space for downstream task and the its realization
Y∗P , 𝑦∗P The pair-wise label space on P and its realization
Y∗D , 𝑦∗D The pair-wise label space on D and its realization
V,H The space of nodes in the downstream graph and the space of

node representation
𝒏, ℎ(𝒏) The random variable of node pair sampled fromV ×V and its

corresponding representation pair
𝑓 , 𝜃down, 𝜃refine The pre-trained GNN encoder, parameters of GNN after op-

timization of the pre-trained model refinement, parameters of
GNN after optimization of downstream tasks

𝑔, 𝜙down The downstream classifier, parameters of classifier after opti-
mization of downstream tasks

Table 3: Description of major notations.

A.2 Implement Details
Statistics for datasets. For pre-training, we use the same datasets as pre-trained models did. For the downstream data, we employ 12 graph
datasets from various domains: US-Airport (Ribeiro, Saverese, and Figueiredo 2017), Brazil-Airport (Ribeiro, Saverese, and Figueiredo 2017),
Europe-Airport (Ribeiro, Saverese, and Figueiredo 2017), H-index (Qiu et al. 2020), Wisconsin (Pei et al. 2020; Sun et al. 2022b), Texas (Pei
et al. 2020), Cora (McCallum et al. 2000), Cornell (Pei et al. 2020), DD242 (Rossi and Ahmed 2015), DD68 (Rossi and Ahmed 2015) and
DD687 (Rossi and Ahmed 2015). We also include large scale graph dataset Ogbarxiv (Hu et al. 2020a). Table 4 shows their statistics.

Type # Nodes # Edges # Classes

D
ow

ns
tre

am

US-Airport transportation 1,190 13,599 4
Brazil-Airport transportation 131 1,074 4
Europe-Airport transportation 399 5,995 4
H-index coauthorship 5,000 44,020 2
Cora coauthorship 2,708 5,278 7
Ogbarxiv coauthorship 169,343 1,166,243 40
Wisconsin web 251 466 5
Texas web 183 309 5
Cornell web 183 280 5
DD68 others 775 2,093 20
DD687 others 725 2,600 20
DD242 others 1,284 3,303 20

Table 4: Statistics for the graph pre-training datasets and the downstream datasets.

Experimental details of Figure 1. We evaluate the performance after fine-tuning and learning from scratch in node classification and link
prediction on 11 downstream datasets (except for Ogbarxiv due to time cost). We take GCC as the backbone model, and use GCC pre-trained
model released by the official code (https://github.com/THUDM/GCC). We show that the correlation between task consistency and improvement
is a strong positive correlation with p-value less than 0.1.
Description of baselines. We compare with the following baselines.

• L2_penalty regularizes the model parameters with L2 norm.



• L2_SP regularizes the distance between the model parameters and the pre-trained parameters with L2 norm.
• L2_SP_Fisher regularizes the distance between the model parameters and the pre-trained parameters with Fisher information matrix. We

only implement L2_SP_Fisher to GCC. Parts of model parameter (like projection head) of GraphCL are not shared when fine-tuning,
which disables the estimation of the Fisher information matrix.

• Feature (DELTA w/o Att) regularizes the distance between the model’s hidden layer outputs and the pre-trained hidden layer outputs with
L2 norm.

• DELTA regularizes the distance between the model’s hidden layer outputs and the pre-trained hidden layer outputs with an attention-based
L2 norm to preserve the transferable outputs.

• GTOT utilizes the node representation between the model and the pre-trained model with graph topology induced optimal transport, which
is tailored for graph data.

• SupCon extend the self-supervised batch contrastive approach to the fully-supervised setting, which can also pull apart the representation
after pre-training.

• L2P designs a meta learning strategy for dual adaptation on node-level and graph level to narrow the gap during the pre-training phase.
• GPPT designs both task tokens and structure tokens, which are employed to formulate node prompts for node classification applications.
• GraphPrompt introduced a unifying framework by mapping diverse tasks onto a common task template.

Implementation details of our model. To evaluate the fine-tuning strategies, we take node classification and link prediction as the downstream
task. For node classification, we randomly take 90% of the data for training and the remaining data for testing, following (Qiu et al. 2020).
When conducting the link prediction, we use 90% existent links and the same number of nonexistent links as the training set, and the rest 10%
existent links and the same number of nonexistent links for testing, following (Wang et al. 2021).

We utilize the pre-trained models GCC, GraphCL, EdgePred, and ContextPred, as released by the original paper. Note that we opt for
ContextPred with a value of 𝐾 = 2, as specified in the original paper. We fine-tune our model and all baselines with a logistic classifier on node
classification and 3 layers of linear network for link prediction, using the Adam optimizer with a learning rate of 0.005 for 50 epochs. For
baselines, we set the regularization coefficient as suggested by the original paper, if the coefficient is not provided, we search it in 0.001, 0.01,
0.1, 1.0 and report the best performance. All experiments are conducted on a single machine of Linux system with an Intel Xeon Gold 5118
(128G memory) and a GeForce GTX Tesla P4 (8GB memory).

We then elaborate on the details of sampling node pairs for constructing 𝑃certain and 𝑃uncertain respectively. (1) The first kind of node pair is
that whose both or either nodes are labeled or predicted with high confidence. These node pairs are reliable for learning and accelerating the
training process. In contrast, node pairs consisting of two unlabeled nodes with low prediction confidence would probably give rise to incorrect
pair-wise labels, leading to an unstable training process and poor performance. Specifically, let 𝑝𝑖 be the confidence of predicted class for node
𝑣𝑖 , and 1 otherwise. For a node pair (𝑣𝑖 , 𝑣 𝑗 ), node 𝑣𝑖 and 𝑣 𝑗 are sampled with the probability 𝑝𝑖 and 𝑝 𝑗 , respectively. The sampled node pairs
form the set of the first kind of node pairs 𝑃certain. (2) On the other hand, the node pairs whose one node is reliable (i.e., labeled or predicted
with high confidence) and the other is the downstream classifier uncertain with. In this way, the information in the reliable nodes can diffuse to
unlabeled nodes with low prediction confidence, thus maximizing their influence on the whole graph. For a node pair (𝑣𝑖 , 𝑣 𝑗 ), node 𝑣𝑖 and 𝑣 𝑗
are sampled with the probability 𝑝𝑖 and 1 − 𝑝 𝑗 , respectively. The sampled node pairs form the set of second kind of node pairs 𝑃uncertain. In the
implementation, we establish a threshold 𝛿 and take nodes with confidence 𝑝𝑖 exceeding this threshold 𝛿 as those having high confidence.

A.3 Algorithm

The overall algorithm for Bridge-Tune is presented in Algorithm 1. As mentioned in § 4.2, our Bridge-Tune pipeline conducts the following
two steps iteratively. (i) The GNN model 𝑓 is continued training to optimize the pre-trained model refinement objective on the downstream
graph (lines 4-6). (ii) The graph encoder and classifier are jointly optimized based on the downstream task (lines y).

Algorithm 1: The pre-trained model refinement.
Input: Labeled nodes set Y𝐿 , unlabeled nodes set Y𝑈 , pre-trained parameters 𝜃pre-train, maximum iteration 𝑇max, learning rate 𝛼,

threshold 𝛿.
Output: 𝜃 for graph encoder 𝑓 , 𝜙 for downstream classifier 𝑔,

1 initialization Y(0)
𝑃
← {}

2 initialization 𝜃
(0)
down ← 𝜃pre-train

3 for 𝑡 = 0, 1, 2, · · · , 𝑇max − 1 do
4 Y(𝑡 )

𝑃
= 𝑔

𝜙
(𝑡 )
down
◦ 𝑓

𝜃
(𝑡 )
down
(𝐺down)

5 Update 𝑃certain, 𝑃uncertain.
6 Conduct pre-trained model refinement task, resulting 𝜃 (𝑡 )refine.
7 Conduct downstream fins-tuning task, resulting 𝜃 (𝑡+1)down , 𝜙

(𝑡+1)
down .

8 end

The time complexity of our model mainly focuses on calculating the Lrefine. The computation of pairwise labels 𝑎𝑖 𝑗 involves calculations
between pairs, and our optimization is adapted in the form of mini-batch optimization. Assuming the batch size is 𝐵 and the number of
downstream nodes is |𝑉 |, and the overall time complexity is 𝑂 ( |𝑉 |/𝐵 × 𝐵2), namely 𝑂 ( |𝑉 |𝐵), which is linear to the graph size.



A.4 Additional Experiment Results

Fine-tuned performance on different graph pre-trained models. We first present the fine-tuning results on the graph pre-trained model
GCC. Table 5 and Table 6 present the results on node classification and link prediction respectively. Note that GPPT and GraphPrompt can only
be adopted to node classification tasks, so we do not compare them when conducting link prediction tasks. We find that our model beats the best
baseline in most cases. In contrast, the baseline models often cannot help fine-tuning, and even perform worse than directly fine-tuning the
models (i.e., fine-tune). The potential reason might be that most baselines simply focus on regularizing the parameters and representations, and
thus cannot essentially diminish the impact of the gap between pre-training and downstream tasks.

Node Classification

G
C

C

Model Dataset US-Airport Brazil-Airport Europe-Airport H-index Wisconsin Texas DD242 DD68 DD687 Cornell Cora Ogbarxiv
Fine-tune 66.21(4.23) 73.24(11.60) 58.62(7.35) 81.90(1.59) 59.82(7.69) 63.95(8.67) 14.49(2.94) 12.39(3.74) 8.26(4.16) 48.04(5.94) 29.54(1.44) 18.62(1.92)
Freeze 63.78(5.11) 69.31(14.02) 53.43(7.57) 74.88(0.97) 53.39(8.47) 62.31(10.80) 14.79(3.17) 12.77(4.46) 11.31(2.74) 47.57(5.65) 29.98(1.82) 14.56(7.60)
Rand 63.44(3.22) 71.73(13.56) 57.35(4.72) 81.21(1.62) 56.89(8.11) 59.70(12.75) 12.31(2.17) 13.81(3.12) 11.18(3.25) 50.82(3.27) 29.80(1.74) 18.61(1.88)
L2_penalty 64.63(2.31) 67.60(11.93) 55.38(5.37) 79.88(0.75) 55.84(7.62) 56.33(3.46) 16.59(2.28) 12.26(2.80) 8.98(3.60) 42.54(10.81) 31.68(0.84) 19.27(0.21)
L2_SP 63.70(3.73) 67.02(8.42) 54.41(5.53) 78.56(1.97) 53.43(5.53) 56.95(8.59) 13.71(2.07) 9.16(2.19) 7.04(2.03) 36.49(8.95) 36.60(3.22) 19.28(0.17)
L2_SP_Fisher 64.71(3.94) 71.25(12.42) 57.14(4.81) 80.32(1.44) 57.71(6.52) 60.76(13.11) 19.32(3.83) 13.54(4.25) 8.97(2.09) 44.30(5.80) 43.28(2.21) /
DELTA 63.37(3.13) 62.56(11.56) 55.95(6.23) 75.42(1.02) 55.39(4.31) 56.36(9.82) 14.57(2.78) 11.62(2.77) 9.93(3.00) 45.35(5.95) 39.33(2.09) /
Feature (DELTA w/o Att) 62.70(1.84) 62.78(1.60) 53.18(7.08) 72.04(2.17) 55.36(5.94) 64.06(6.32) 14.72(1.73) 9.81(3.18) 7.86(3.85) 47.40(9.43) 37.26(1.48) 19.34(0.13)
GTOT 65.82(3.81) 74.60(14.10) 58.43(4.93) 81.00(1.36) 54.14(6.14) 62.95(7.99) 20.33(3.33) 14.45(2.26) 8.28(2.49) 45.91(8.82) 44.13(2.33) 19.32(0.16)
SupCon 66.56(4.18) 76.21(13.15) 59.88(6.67) 81.00(1.47) 60.60(8.20) 67.28(7.83) 14.88(1.77) 9.54(3.69) 7.17(1.71) 37.69(11.29) 35.42(3.13) 19.36(0.31)
L2P 55.90(3.80) 68.43(16.48) 57.51(4.20) 80.82(1.43) 59.37(9.04) 62.32(4.26) 9.15(2.68) 8.59(1.41) 7.26(2.67) 27.89(15.97) 28.97(3.55) /
GPPT 64.03(4.13) 65.66(13.82) 53.12(9.00) 74.66(1.90) 47.42(5.22) 57.90(7.46) 13.63(1.31) 10.83(2.98) 6.35(3.20) 43.60(11.57) 35.45(1.43) 19.85(0.19)
GraphPrompt 62.86(5.90) 60.99(16.06) 50.35(10.46) 73.40(1.85) 51.40(7.27) 59.06(7.59) 13.79(1.83) 11.75(3.00) 5.93(2.40) 39.83(8.19) 36.52(1.97) 19.78(0.25)
Bridge-Tune 68.99(4.96) 77.86(13.95) 61.88(5.22) 82.66(0.96) 62.23(8.44) 70.00(5.82) 22.97(2.64) 16.00(5.60) 12.82(4.14) 50.32(9.37) 44.17(3.37) 20.49(4.35)

Table 5: Micro F1 scores of different fine-tuning strategies on GCC pre-trained model under the downstream task (node classification). The
notation “/” means out of memory or no convergence for more than three days.

Link Prediction

G
C

C

Model Dataset US-Airport Brazil-Airport Europe-Airport H-index Wisconsin Texas DD242 DD68 DD687 Cornell Cora
Fine-tune 88.44(0.14) 80.94(1.53) 82.23(2.68) 90.02(0.68) 71.13(1.05) 74.52(4.16) 99.06(0.38) 98.13(1.07) 99.32(0.22) 96.02(0.79) 97.14(0.23)
Freeze 93.23(0.09) 82.52(1.28) 86.02(1.84) 95.67(0.07) 68.37(1.21) 65.95(2.28) 98.73(0.46) 97.53(1.34) 97.83(0.13) 95.60(0.64) 94.88(0.11)
Rand 87.45(0.19) 82.67(1.66) 82.44(2.54) 87.02(0.21) 70.41(0.80) 74.36(3.88) 99.67(0.21) 99.18(0.21) 99.01(0.18) 94.67(0.86) 97.48(0.20)
L2_penalty 94.28(0.12) 84.97(1.51) 88.36(2.62) 96.33(0.13) 70.38(1.43) 65.26(5.32) 99.40(0.07) 97.64(1.06) 98.07(0.16) 96.27(0.81) 95.96(0.31)
L2_SP 93.91(0.12) 82.46(2.01) 87.40(2.32) 97.51(0.53) 70.50(0.98) 68.20(4.36) 98.97(0.03) 97.80(0.95) 98.40(0.18) 96.32(0.66) 96.09(0.40)
L2_SP_Fisher 90.93(0.13) 81.90(1.48) 80.97(2.84) 98.43(0.42) 70.47(1.33) 78.63(4.09) 99.10(0.21) 97.83(1.03) 99.06(0.15) 95.87(0.72) 97.34(0.25)
DELTA 94.47(0.17) 85.93(1.57) 84.05(2.44) 98.52(0.13) 71.42(1.29) 71.52(4.35) 99.23(0.06) 98.40(0.89) 99.06(0.16) 96.18(0.80) 97.20(0.22)
Feature (DELTA w/o Att) 94.03(0.43) 82.17(1.39) 86.42(2.88) 98.04(0.42) 69.89(2.21) 70.88(3.92) 99.30(0.22) 98.19(1.34) 98.82(0.20) 96.17(0.91) 97.16(0.18)
GTOT 90.76(0.12) 82.65(1.57) 81.47(2.92) 98.58(0.72) 67.73(2.51) 76.80(3.64) 98.27(0.15) 94.86(2.31) 97.82(0.31) 93.79(1.03) 96.78(0.48)
SupCon 88.62(1.68) 81.83(1.23) 83.05(2.66) 98.56(0.32) 70.89(1.13) 68.57(5.24) 98.53(0.11) 97.80(0.46) 99.42(0.11) 96.18(0.83) 97.13(0.15)
L2P 92.28(0.33) 75.97(0.05) 80.81(3.07) 96.61(0.48) 68.30(2.35) 70.68(4.27) 99.19(0.19) 98.32(0.61) 98.78(0.39) 91.46(4.02) 97.92(0.42)
Bridge-Tune 94.97(0.35) 86.13(1.68) 89.47(2.71) 98.80(0.13) 71.90(1.47) 78.87(4.89) 99.61(0.10) 98.56(1.29) 99.54(0.11) 96.34(1.01) 97.92(0.29)

Table 6: AUC scores of different fine-tuning strategies on GCC pre-trained model under the downstream task (link prediction). Due to the large
number of node pair samples in Ogbarxiv, which makes the downstream training very slow, we do not report the results.

In the following, we conduct experiments on other pre-trained models, including GraphCL, EdgePred, ContextPred. It is noted that, we only
implement L2_SP_Fisher to GCC, because parts of model parameter (like projection head) of GraphCL, EdgePred, ContextPred are not shared
when fine-tuning, which disables the estimation of the Fisher information matrix. Besides, SupCon and L2P are not fine-tuning methods indeed,
so we do not compare them when utilzing other pre-trained models. Prompt methods such as GraphPrompt and GPPT are only suitable for node
classification tasks, so we do not compare them under link prediction tasks.

Table 7 and Table 8 present the fine-tuning results on GraphCL pre-trained model. We can see that our model could beat the baselines in most
of the datasets. In addition, some baseline models perform much worse than learning from scratch (i.e., GraphCL rand), which implies that the
negative transfer phenomenon would be exacerbated if we do not carefully choose fine-tuning methods. We also note that most of the results
are much worse than those on GCC pre-trained model in Table 5, and there even exists a more serious negative transfer phenomenon when
fine-tuning on GraphCL. This is because GraphCL model is not designed for cross-domain pre-training, thus presenting limited generalization
ability. In such case, our fine-tuning method still achieves comparable results, which verifies the effectiveness of Bridge-Tune.

Table 9, Table 10, Table 11, and Table 12 illustrate the fine-tuning results on the EdgePred and ContextPred pre-trained models on node
classification and link prediction. EdgePred and ContextPred are typical examples of graph reconstruction and graph context prediction
pre-training tasks. It is evident that our model outperforms the baselines in most cases. Moreover, we can observe that some baseline models



Node Classification
G

ra
ph

C
L

Model Dataset US-Airport Brazil-Airport Europe-Airport H-index Wisconsin Texas DD242 DD68 DD687 Cornell Cora
Fine-tune 60.00(3.57) 75.55(9.65) 56.84(9.49) 81.48(1.06) 47.86(10.13) 59.53(11.00) 17.04(5.03) 17.82(7.09) 23.08(12.07) 54.20(9.50) 30.24(2.76)
Freeze 43.19(3.87) 61.15(10.67) 47.38(5.93) 61.50(1.79) 34.22(8.14) 38.24(10.34) 8.26(2.56) 11.21(4.35) 7.17(3.25) 51.99(10.82) 18.24(2.36)
Rand 59.08(6.19) 74.84(9.03) 57.12(6.19) 80.90(1.03) 47.86(9.81) 59.04(7.33) 17.06(3.55) 17.96(8.09) 22.40(10.74) 54.09(9.10) 30.39(2.67)
L2_penalty 57.73(2.66) 73.41(10.47) 54.10(6.89) 52.74(1.45) 47.86(8.96) 56.23(9.91) 14.33(3.02) 13.54(2.67) 12.97(2.52) 55.18(9.09) 30.21(2.38)
L2_SP 58.07(3.51) 79.40(9.73) 54.87(6.59) 71.16(3.99) 49.03(8.89) 57.89(7.46) 13.79(3.0) 12.38(2.96) 13.65(2.96) 54.06(9.64) 29.32(2.83)
DELTA 57.23(3.84) 76.32(8.77) 55.35(8.29) 78.78(1.91) 45.83(6.08) 56.23(9.91) 13.40(2.95) 15.47(2.99) 13.80(4.85) 51.87(7.44) 29.43(3.88)
Feature (DELTA w/o Att) 58.15(3.27) 74.84(10.26) 56.34(9.50) 67.74(2.11) 44.26(6.98) 55.15(10.98) 14.25(2.62) 11.99(2.41) 14.22(3.06) 53.54(9.84) 29.47(3.17)
GTOT 59.58(3.13) 78.57(11.88) 56.85(7.78) 80.94(1.41) 48.63(8.46) 55.61(11.22) 15.58(4.44) 18.99(7.34) 22.68(10.91) 53.04(10.86) 30.76(2.99)
GPPT 56.81(3.69) 76.43(9.63) 58.62(6.72) 64.29(2.98) 47.05(9.73) 57.87(10.00) 14.95(3.13) 12.52(2.24) 13.66(3.76) 54.62(8.52) 30.13(3.14)
GraphPrompt 57.31(4.22) 74.12(8.20) 59.13(8.02) 65.41(2.89) 47.05(9.73) 57.34(10.39) 15.65(2.73) 13.41(2.14) 12.83(3.08) 54.09(9.10) 30.24(3.42)
Bridge-Tune 60.50(2.84) 80.31(8.42) 57.33(9.83) 81.62(1.36) 50.09(13.06) 59.88(8.04) 17.61(3.76) 21.53(7.06) 25.04(0.14) 54.65(9.37) 30.80(3.02)

Table 7: Micro F1 scores of different fine-tuning strategies on GraphCL pre-trained model under the downstream task (node
classification).

Link Prediction

G
ra

ph
C

L

Model Dataset US-Airport Brazil-Airport Europe-Airport H-index Wisconsin Texas DD242 DD68 DD687 Cornell Cora
Fine-tune 64.97(1.11) 77.05(0.88) 76.17(2.25) 55.52(1.52) 56.36(1.46) 61.39(12.93) 52.12(0.94) 53.59(1.44) 53.13(2.00) 62.60(2.90) 53.46(1.40)
Rand 64.97(1.23) 76.88(2.43) 76.50(2.73) 55.37(1.50) 56.76(0.71) 64.11(7.23) 52.26(0.98) 53.37(1.56) 52.22(2.68) 63.11(3.36) 53.23(1.41)
L2_penalty 63.26(0.70) 74.70(2.13) 75.89(1.51) 53.05(0.68) 57.28(5.74) 53.68(8.83) 50.77(1.66) 53.22(1.72) 52.73(2.32) 61.69(3.99) 50.14(1.57)
L2_SP 64.36(1.95) 75.10(1.64) 76.92(0.64) 55.21(1.59) 56.16(0.83) 62.41(10.52) 51.86(0.64) 53.44(0.75) 52.40(2.45) 61.60(5.15) 53.44(1.88)
DELTA 61.74(2.50) 73.61(0.91) 73.24(0.66) 55.19(1.42) 52.72(2.51) 58.76(9.04) 51.83(2.92) 53.39(1.03) 51.08(1.28) 57.56(1.67) 50.93(2.34)
Feature (DELTA w/o Att) 61.88(1.55) 72.49(4.25) 71.13(0.47) 53.43(0.87) 53.43(2.36) 61.13(9.03) 51.22(1.82) 54.60(1.93) 51.51(1.56) 57.96(4.26) 51.82(1.12)
GTOT 63.81(2.37) 77.26(1.55) 76.55(2.35) 55.54(1.56) 56.44(1.20) 63.92(8.58) 51.76(0.74) 53.55(1.18) 51.26(1.14) 61.49(3.04) 52.04(1.57)
Bridge-Tune 65.71(1.80) 77.68(2.47) 77.36(1.77) 55.78(1.50) 55.42(2.68) 64.92(12.66) 52.34(1.07) 53.48(1.81) 53.28(2.29) 65.34(1.05) 53.52(1.61)

Table 8: AUC scores of different fine-tuning strategies on GraphCL pre-trained model under the downstream task (link prediction).

perform significantly worse than learning from scratch when their task consistency is low, such as DD68 and DD687. Such a result further
validates the effectiveness of our consistency metric.

Based on the previous experimental results, we can draw the following two conclusions. (1) The downstream task node classification has the
highest task consistency measure (averaged over all datasets) with the pre-training task constrastive learning. Experimental results also support
this by showing that our proposed fine-tuning yields improvements of 19.01%, 5.07%, 4.24% in contrastive learning, graph reconstruction and
graph context prediction, when compared to the method without pre-training. (2) Link prediction has the highest task consistency with graph
reconstruction, which is also supported by experimental results.

Node Classification

Ed
ge

Pr
ed

Model Dataset US-Airport Brazil-Airport Europe-Airport H-index Wisconsin Texas DD242 DD68 DD687 Cornell Cora
Fine-tune 58.31(3.17) 75.71(10.28) 56.00(5.15) 81.08(1.32) 47.72(11.34) 58.06(12.37) 17.14(3.87) 17.06(7.08) 22.53(9.17) 54.65(8.06) 30.39(2.46)
Freeze 44.71(3.12) 38.90(13.90) 43.86(5.49) 60.45(2.30) 31.06(11.38) 42.49(14.10) 7.40(1.91) 7.60(3.36) 6.48(2.81) 42.19(11.03) 17.65(2.99)
Rand 59.08(6.19) 74.84(9.03) 57.12(6.19) 80.90(1.03) 47.86(9.81) 59.04(7.33) 17.06(3.55) 17.96(8.09) 22.40(10.74) 54.09(9.10) 30.49(2.67)
L2_penalty 49.16(4.61) 62.69(17.03) 51.34(6.02) 70.18(2.82) 47.06(8.91) 55.15(11.20) 14.33(3.02) 13.54(2.67) 12.97(2.52) 55.18(9.09) 30.21(2.38)
L2_SP 58.32(2.82) 71.81(10.11) 57.36(7.74) 63.19(1.22) 48.26(9.05) 55.70(10.49) 14.33(3.26) 14.96(1.97) 13.67(2.98) 55.15(8.21) 30.28(2.38)
DELTA 58.57(3.96) 77.09(10.33) 56.36(8.51) 78.86(1.93) 48.66(9.11) 55.70(10.20) 15.74(2.81) 16.76(3.34) 14.35(3.31) 55.18(9.09) 30.46(2.69)
Feature (DELTA w/o Att) 58.91(2.92) 74.84(11.86) 56.59(8.82) 70.14(2.35) 49.06(9.51) 55.70(10.20) 15.03(2.24) 15.61(3.90) 13.67(4.26) 54.62(8.52) 30.50(2.51)
GTOT 61.09(3.63) 77.25(11.30) 59.62(7.63) 80.70(1.63) 48.26(9.89) 57.87(11.30) 18.24(5.27) 19.25(6.26) 22.53(9.17) 54.06(9.64) 30.91(3.68)
GPPT 55.63(2.22) 65.66(14.65) 55.07(9.81) 61.51(2.40) 47.86(8.96) 55.15(11.20) 14.25(3.30) 13.54(2.85) 12.15(3.73) 54.40(7.23) 30.21(2.41)
GraphPrompt 57.73(3.34) 64.89(13.37) 55.08(9.35) 62.29(2.36) 47.46(8.30) 55.70(10.49) 14.17(3.17) 13.02(2.75) 13.65(2.99) 54.62(8.52) 30.17(2.44)
Bridge-Tune 61.34(2.03) 77.36(8.06) 60.00(4.74) 82.00(1.45) 49.42(6.82) 56.26(10.90) 18.94(6.06) 20.28(5.63) 24.63(13.51) 58.07(6.89) 31.22(2.59)

Table 9: Micro F1 scores of different fine-tuning strategies on EdgePred (graph reconstruction) pre-trained model under the
downstream task (node classification).

Bridge-Tune performance on large-scale real-world scenario. We evaluate the performance of Bridge-Tune on a real large-scale financial
dataset. DGraph-Fin (Huang et al. 2022) represents a realistic user-to-user social network in the financial industry, and its objective is to
differentiate Fraud users (Class 1) from Normal users (Class 0) in the context of anomaly detection. To adapt it to the graph pretraining scenario,
we divided DGraph-Fin based on time slices. The data that appeared in the first half of the time period is considered as the pretraining dataset.
And the data that appeared in the second half of the time period is considered as the downstream dataset. It is divided into training/validation/test



Link Prediction
Ed

ge
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ed
Model Dataset US-Airport Brazil-Airport Europe-Airport H-index Wisconsin Texas DD242 DD68 DD687 Cornell Cora
Fine-tune 60.96(1.36) 73.76(3.22) 74.55(3.53) 54.50(1.93) 50.49(6.67) 49.52(12.21) 48.90(0.56) 52.44(1.92) 50.94(0.81) 51.20(4.20) 49.69(1.93)
Rand 59.64(0.90) 77.76(2.49) 74.82(1.49) 54.31(1.38) 53.15(3.81) 53.32(5.51) 54.31(0.70) 57.47(0.78) 52.17(1.29) 61.09(1.89) 51.66(1.41)
L2_penalty 54.98(1.70) 66.97(1.53) 63.99(3.71) 52.61(0.43) 53.20(4.99) 44.9(11.99) 48.79(0.83) 50.36(2.78) 49.48(1.39) 53.41(4.97) 51.11(0.85)
L2_SP 60.30(1.12) 73.09(1.63) 72.95(2.42) 53.09(0.93) 52.00(7.39) 50.16(11.68) 48.87(0.44) 52.12(1.73) 51.17(1.11) 51.17(1.11) 49.51(1.82)
DELTA 55.49(2.38) 67.74(1.56) 68.61(2.97) 52.98(0.73) 52.91(3.84) 52.45(4.72) 48.89(0.54) 49.74(0.64) 50.10(1.02) 54.96(3.48) 51.83(0.66)
Feature (DELTA w/o Att) 55.90(1.21) 67.97(3.20) 68.62(1.58) 53.36(0.50) 52.42(5.06) 48.88(6.93) 50.38(0.21) 50.43(0.85) 50.24(0.79) 52.55(4.65) 51.18(1.08)
GTOT 62.46(1.87) 73.41(1.55) 76.19(3.14) 53.54(1.21) 54.27(6.57) 58.39(5.77) 49.74(0.59) 52.09(1.80) 50.40(0.88) 57.31(1.21) 50.35(0.32)
Bridge-Tune 63.15(1.20) 77.23(0.98) 76.84(2.55) 55.27(0.85) 57.42(4.06) 57.35(9.75) 53.73(1.19) 55.38(1.21) 53.33(3.39) 60.42(3.84) 51.97(1.52)

Table 10: AUC scores of different fine-tuning strategies on EdgePred pre-trained model under the downstream task (link
prediction).

Node Classification
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Model Dataset US-Airport Brazil-Airport Europe-Airport H-index Wisconsin Texas DD242 DD68 DD687 Cornell Cora

Fine-tune 60.67(4.15) 75.79(13.10) 60.37(6.49) 81.04(1.62) 48.26(9.73) 58.95(11.71) 16.98(3.64) 15.38(5.19) 21.62(12.24) 54.65(8.06) 31.72(2.79)
Freeze 44.45(3.41) 51.10(11.64) 51.35(10.15) 56.83(1.93) 37.09(14.83) 47.57(10.50) 11.06(2.43) 9.03(2.81) 8.84(3.49) 47.43(13.73) 20.72(3.77)
Rand 59.08(6.19) 74.84(9.03) 57.12(6.19) 80.90(1.03) 47.86(9.81) 59.04(7.33) 16.96(3.55) 17.96(8.09) 22.40(10.74) 54.09(9.10) 30.39(2.67)
L2_penalty 49.16(4.71) 70.27(13.81) 49.83(7.00) 52.78(2.38) 47.86(8.41) 55.15(11.20) 14.33(3.02) 13.54(2.67) 12.97(2.52) 55.18(9.09) 30.21(2.38)
L2_SP 56.64(3.67) 71.81(10.11) 57.36(7.74) 62.29(5.99) 48.26(9.05) 55.70(10.49) 15.58(3.84) 14.96(1.97) 13.67(2.98) 54.62(8.52) 30.28(2.38)
DELTA 56.39(1.97) 77.09(10.33) 56.36(8.51) 78.86(1.93) 47.86(8.78) 55.70(10.20) 14.88(3.01) 16.76(3.34) 14.35(3.31) 55.18(9.09) 30.13(2.50)
Feature (DELTA w/o Att) 55.29(3.54) 75.55(11.34) 57.36(7.50) 63.05(5.39) 48.26(8.50) 56.81(11.81) 15.35(2.63) 15.08(3.77) 15.05(4.03) 54.62(8.52) 29.80(2.30)
GTOT 60.72(2.58) 77.25(11.30) 60.15(4.41) 80.70(1.63) 48.26(9.89) 57.89(11.00) 16.36(3.91) 18.85(5.73) 17.13(6.09) 55.18(8.74) 30.98(2.95)
GPPT 56.13(3.96) 75.60(8.15) 58.87(7.43) 64.53(2.25) 48.26(9.89) 55.70(10.49) 15.65(3.44) 15.09(2.39) 13.25(2.68) 54.62(8.52) 30.24(3.42)
GraphPrompt 55.88(4.19) 74.89(10.60) 59.63(6.46) 65.13(2.18) 48.46(5.34) 54.34(8.34) 15.58(3.66) 14.83(2.06) 13.80(3.01) 54.62(8.52) 30.28(2.38)
Bridge-Tune 61.86(2.47) 77.25(9.75) 61.00(2.00) 81.44(1.68) 49.06(9.51) 59.21(12.38) 18.24(5.27) 18.37(3.70) 23.89(9.12) 58.07(6.03) 31.81(3.23)

Table 11: Micro F1 scores of different fine-tuning strategies on ContextPred (graph context prediction) pre-trained model under
the downstream task (node classification).
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Model Dataset US-Airport Brazil-Airport Europe-Airport H-index Wisconsin Texas DD242 DD68 DD687 Cornell Cora
Fine-tune 65.23(2.40) 77.59(2.15) 79.17(0.82) 56.27(0.85) 49.76(2.69) 52.08(8.75) 57.29(5.77) 52.86(1.59) 52.74(3.69) 62.15(2.62) 50.57(0.99)
Rand 65.16(0.55) 77.34(2.32) 80.46(0.93) 53.27(2.72) 54.32(1.45) 58.26(5.49) 54.07(2.03) 54.19(1.85) 52.67(1.52) 64.32(2.05) 53.07(0.84)
L2_penalty 60.31(1.65) 74.26(3.64) 74.16(2.03) 54.16(1.57) 52.79(3.46) 53.45(2.37) 53.12(1.56) 52.39(1.87) 51.18(2.26) 61.38(3.31) 50.09(1.81)
L2_SP 64.22(1.96) 77.42(2.35) 78.80(1.36) 55.42(0.16) 50.68(1.22) 52.45(8.89) 54.57(4.15) 53.39(2.06) 52.62(3.29) 60.37(1.40) 50.41(0.91)
DELTA 59.35(1.98) 78.51(2.23) 75.57(1.52) 55.74(3.6) 53.72(1.14) 56.93(3.76) 54.16(2.25) 52.27(1.44) 54.56(0.85) 60.58(3.76) 50.22(2.21)
Feature (DELTA w/o Att) 62.28(1.55) 77.69(3.21) 76.01(0.81) 53.78(0.73) 56.36(2.78) 56.01(4.60) 53.77(1.09) 52.02(1.36) 54.51(0.84) 58.77(4.05) 50.15(2.01)
GTOT 64.54(2.52) 77.95(1.66) 79.82(0.11) 54.78(1.31) 54.60(3.51) 58.39(2.44) 51.88(1.97) 52.78(1.12) 54.38(2.09) 60.86(2.67) 51.23(1.99)
Bridge-Tune 65.29(0.98) 77.52(3.22) 79.95(0.13) 57.52(1.32) 57.72(2.34) 58.45(2.93) 56.45(1.88) 54.32(1.15) 54.65(1.66) 63.23(3.02) 53.03(2.31)

Table 12: AUC scores of different fine-tuning strategies on ContextPred pre-trained model under the downstream task (link
prediction).

sets by averaging the classes, with a split of 70/15/15.
We implemented GCC, GraphCL, and JOAO methods to pre-train GNN, and compared our method to the naive fine-tuning approach in

Table 13. The implementation details of the pre-trained model used in the experiment are consistent with A.2. From Table 13, we can see that
our fine-tuning strategy Bridge-Tune performs well and beats its corresponding backbone models by an average of +7.99% even on large-scale
datasets with imbalanced label distributions.

Dataset # Nodes # Edges Method JOAO GraphCL GCC
Pre-training 2,416,372 2,172,701 Fine-tune 56.54(0.09) 51.07(0.32) 64.86(2.85)
Downstream 1,310,092 813,166 Bridge-Tune 58.32(0.48) 60.71(0.52) 66.13(0.93)

Table 13: AUC scores of Bridge-Tune performance on different contrastive-based pre-trained model in DGraph-Fin.



Optimization Analysis. Figure 5 shows the optimization process during fine-tuning. The left figure presents the downstream loss curve of
directly fine-tuning and that of fine-tuning after refinement. We can see that after performing pre-trained model refinement, we obtain a better
start point when conducting downstream task, and achieve lower loss than directly fine-tuning. This suggests that pre-trained model refinement
can help downstream make full use of the pre-trained models. The right figure shows the model parameter similarity between the reference
point and the parameter before and after pre-trained model refinement. We take the parameter of the best performing model in Table 1 as the
reference point. We find that pre-trained model refinement process brings the model closer to the best performing model’s parameter, which
verifies the utility of Bridge-Tune. Another interesting observation is that the parameter similarity with the reference point decreases layer by
layer. This validates that the general patterns captured by the first few layers of GNNs are indeed helpful for downstream, which can be applied
to downstream without many adaptions.
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Figure 5: Left: The loss curve during fine-tuning phase. Right: Parameter similarity between the reference point and parameter
before and after pre-trained model refinement in each GNN layer. The similarity is calculated via Centered Kernel Alignment
(CKA) similarity (Kornblith et al. 2019).

Evaluation of label-efficiency. In order to more comprehensively demonstrate the label efficiency of our approach, we further investigate
the model performance under different label ratios {0.01, 0.05, 0.1, 0.2 ,0.3, 0.4, 0.5, 0.6, 0.7} on node classification and link prediction in
the figure below. We find that our model outperforms baselines in most cases, indicating our label-efficiency. Under label ratios {0.05, 0.1,
0.3, 0.5, 0.7}, 56.49%, 58.23%, 62.46%, 64.04%, 65.33% of pseudo labels generated are correct in node classification on US-Airport. In
the experiments, when conducting node classification, we assume all links are available. The label ratios of both node classification and link
prediction are 90%. The setting is the same as GCC, and more details can be found in §A.2.

Figure 6: Left. Node classification on US-Airport. Right. Link prediction on Brazil-Airport. The results are fine-tuned on GCC.

Additional results for case studies. We compare the distribution divergence among datasets and the distributions of representation similarity
of two nodes in negative pairs are shown in Figure 7. From the first row, we still find that after pre-training, the similarity distribution of negative
pairs with the same class and with different classes is hardly distinguishable in most cases. This suggests the gap between pre-training and
downstream task. The final row shows the results after performing the pre-trained model refinement, and we observe a more distinguishable
distribution than the previous two cases. It illustrates the effectiveness of Bridge-Tune, but the distributions on some datasets like Wisconsin and
H-index are still hard to distinguish. Although, negative transfer phenomenon is alleviated, there is still great potential in distinguishing the
distributions of the negative pairs with the same label and different labels.
Effects of hyper-parameters. The hyperparameters learning rate determines the step size at each iteration while moving toward a minimum of
a loss function in graph consistency learning, and is thus an important hyperparameter in our proposed strategy. Figure 8 shows the effect of the
learning rate on downstream performance. We can see that a too small or too large learning rate could deteriorate the performance, and the
optimal performance can be obtained when learning rate is 5.
Comparison: our two-stage optimization vs joint training. We further compare our two-stage approach with the joint training of pre-trained
model refinement and downstream fine-tuning (i.e., Joint: pre-trained model refinement + downstream fine-tuning) and co-training pre-trained
model refinement with the SSL task (i.e., Joint: SSL + pre-trained model refinement) during the fine-tuning stage in Table 14 . The results
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Figure 7: The distribution of representation similarity (cosine similarity) of two nodes in negative pairs. The red (or blue)
distribution records the similarity distribution of negative pairs that are (or not) from the same class. Each row represents the
distribution of representation given by the pre-trained model, directly fine-tuning and after refinement, respectively. Each column
represents the distribution on different downstream datasets. All the experiments are conducted on GCC pre-trained model on
node classification.
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Figure 8: Performance of Bridge-Tune w.r.t varying learning rate (GCC is adopted as the pre-trained model).

indicate the effectiveness of our two-stage approach, while Joint: SSL + pre-trained model refinement achieves a smooth transition to the
downstream task often leads to negative transfer effects.

Model Dataset US-Airport Brazil-Airport Europe-Airport H-index Wisconsin Texas DD242 DD68 DD687 Cornell Cora

GCC fine-tune 66.21(4.23) 73.24(11.60) 58.62(7.35) 81.90(1.59) 59.82(7.69) 63.95(8.67) 14.49(2.94) 12.39(3.74) 8.26(4.16) 48.04(5.94) 29.54(1.44)
Joint: SSL + pre-trained model refinement 61.77(4.82) 63.41(12.58) 54.36(9.09) 76.74(1.81) 53.80(6.10) 54.56(12.85) 14.57(2.43) 10.96(3.47) 7.59(2.16) 44.24(8.52) 33.86(1.61)
Joint: pre-trained model refinement + downstream fine-tuning 62.77(4.05) 67.86(13.36) 53.62(7.76) 76.34 (3.10) 52.63(8.16) 63.30(7.74) 14.95(1.96) 9.38(2.38) 10.19(3.37) 45.35(12.00) 34.79(1.97)
Bridge-Tune 68.15(4.62) 77.86(13.95) 61.88(5.22) 82.66(0.96) 62.23(8.44) 70.00(5.82) 22.97(2.64) 16.00(5.60) 12.82(4.14) 50.32(9.37) 44.17(3.37)

Table 14: Micro F1 scores of fine-tuning strategies and joint learning strategies on GCC pre-trained model under the downstream
task (node classification).

Detailed results of runtime comparison. We compare the training time of baseline models as well as our model in Table 15.

A.5 Theoretical proofs
Proof of Theorem 1. We here provide the detailed proof of Theorem 1 in the main body.
Theorem 1 (Connection between generalization error and task consistency.) Let P and D be the pre-training task and the downstream task,
defined on a shared pair-wise label space. Let CT (D,P) be the task consistency between P and D, let S be an infinite hypothesis set, and let
𝑅(ℎ) be the generalization error of a hypothesis 𝑠 ∈ S on D. And 𝑚 is the number of instances. Then, for any 𝛿 > 0, with probability at least



Fine-tune GPPT GraphPrompt L2_penalty L2_SP DELTA Feature (DELTA w/o Att) GTOT Bridge-Tune
pre-trained model refinement - - - - - - - - 28.65(1.45)
downstream fine-tuning 150.66(4.47) 41.41(0.54) 45.41(3.89) 174.68(1.48) 177.58(1.11) 208.89(3.38) 208.17(2.74) 478.09(9.26) 144.86(8.65)
total 150.66(4.47) 41.41(0.54) 45.41(3.89) 174.68(1.48) 177.58(1.11) 208.89(3.38) 208.17(2.74) 478.09(9.26) 173.51(8.85)

Table 15: Runtime (sec) comparison during the fine-tuning of GCC for node classification on US-Airport. All models are trained till
convergence, where the convergence condition is defined as the point where the increase in accuracy on the training set is less than 0.01.

1 − 𝛿, it follows that

𝑅(ℎ) ≤ log( |S|/𝛿)
𝑚CT (D,P)

.

Proof: Fix any 𝜖 > 0, define S = {ℎ : 𝑅(ℎ) > 𝜖}. The probability that a hypothesis ℎ in S is consistent on a training sample S drawn i.i.d. and
the task consistency CT (D,P) determine the proportion of samples that should have the same pair-wise label. Therefore, it can be bounded as
follows:

P
[
𝑅(ℎ) = 0

]
≤ (1 − 𝜖)𝑚CT (D,P) 𝜖𝑚(1−CT (D,P) ) .

Thus, by the union bound, the following holds:

P
[
∃ℎ ∈ S : 𝑅(ℎ) = 0

]
= P

[
𝑅 (ℎ1) = 0 ∨ · · · ∨ 𝑅

(
ℎ |S |

)
= 0

]
≤
∑︁
S
(1 − 𝜖)𝑚CT (D,P) 𝜖𝑚(1−CT (D,P) )

≤ |S|(1 − 𝜖)𝑚CT (D,P) 𝜖𝑚(1−CT (D,P) )

≤ |S|(1 − 𝜖)𝑚CT (D,P) ≤ |S|𝑒−𝑚𝜖 CT (D,P) .

Setting the right-hand side to be equal to 𝛿 and solving 𝜖 , which concludes the proof.

Proof of Theorem 2 and convergence of Bridge-Tune. In this section, we present the theoretical analysis of Bridge-Tune. We first
prove Theorem 2 in the main body. Then, we theoretically demonstrate that Bridge-Tune can converge to the optimum faster.
Theorem 2 [informal] Under certain theoretical assumptions, the loss for the downstream task Ldown (𝜃refine) ≤ Ldown (𝜃pre-train), where 𝜃refine
is the model parameter after pre-trained model refinement and 𝜃pre-train is the pre-trained model parameter.
Theorem 2. Let Ldown (𝜃, 𝜙) denote the downstream loss with model’s parameters 𝜃 and downstream classifier’s parameter 𝜙, and Lrefine (𝜃)
represent the refinement loss. Assume that Ldown (𝜃, 𝜙) is differentiable, convex and 𝛽-smooth in 𝜃, and ∥∇Ldown (𝜃, 𝜙)∥ , ∥∇Lrefine (𝜃)∥ ≤ 𝑀
for all 𝜃 and 𝜙. With a fixed learning rate 𝜂 = 𝜖

𝛽𝑀2 , for every 𝑥, 𝑦 such that ⟨∇Ldown (𝜃, 𝜙),∇Lrefine (𝜃)⟩ > 𝜖 , we have

Ldown (𝜃, 𝜙) > Ldown (𝜃′, 𝜙), (4)

where 𝜃′ = 𝜃 − 𝜂∇Lrefine (𝜃) is the pre-trained model refinement with one step of gradient descent.
Proof of Theorem 2. Draw inspiration from (Sun et al. 2019), for any learning rate 𝜂, by 𝛽-smoothness, we have

Ldown (𝜃′, 𝜙) = Ldown (𝜃 − 𝜂∇𝜃Lrefine (𝜃), 𝜙)

≤ Ldown (𝜃, 𝜙) − 𝜂 ⟨∇𝜃Ldown (𝜃, 𝜙),∇𝜃Lrefine (𝜃)⟩ +
𝜂2𝛽

2
∥∇𝜃Lrefine (𝜃)∥2 .

(5)

By substituting the 𝜂 with the below value, we have

𝜂∗ =
⟨∇𝜃Ldown (𝜃, 𝜙),∇𝜃Lrefine (𝜃)⟩

𝛽 ∥∇𝜃Lrefine (𝜃)∥2
.

We can deduce that

Ldown
(
𝜃 − 𝜂∗∇𝜃Lrefine (𝜃), 𝜙

)
≤ Ldown (𝜃, 𝜙) −

⟨∇𝜃Ldown (𝜃, 𝜙),∇𝜃Lrefine (𝜃)⟩2

2𝛽 ∥∇𝜃Lrefine (𝜃)∥2
.

Since ∥∇Ldown (𝜃, 𝜙)∥ , ∥∇Lrefine (𝜃)∥ ≤ 𝑀 , and the inner product is larger than 𝜖 , we have

Ldown (𝜃, 𝜙) − Ldown
(
𝜃 − 𝜂∗∇𝜃Lrefine (𝜃), 𝜙

)
≥ 𝜖2

2𝛽𝑀2 .



Given 𝜂 = 𝜖
𝛽𝑀2 , we could deduce that when 0 < 𝜂 ≤ 𝜂∗, we have

Ldown (𝜃′, 𝜙) = Ldown (𝜃 − 𝜂∇𝜃Lrefine (𝜃), 𝜙)

= Ldown

((
1 − 𝜂

𝜂∗

)
𝜃 + 𝜂

𝜂∗
(
𝜃 − 𝜂∗∇𝜃Lrefine (𝜃)

)
, 𝜙

)
≤

(
1 − 𝜂

𝜂∗

)
Ldown (𝜃, 𝜙) +

𝜂

𝜂∗
Ldown

(
𝜃 − 𝜂∗∇𝜃Lrefine (𝜃), 𝜙

)
≤

(
1 − 𝜂

𝜂∗

)
Ldown (𝜃, 𝜙) +

𝜂

𝜂∗

(
Ldown (𝜃, 𝜙) −

𝜖2

2𝛽𝐺2

)
= Ldown (𝜃, 𝜙) −

𝜂

𝜂∗
𝜖2

2𝛽𝑀2 .

(6)

Due to 𝜂
𝜂∗ > 0, we have

Ldown (𝜃, 𝜙) > Ldown (𝜃′, 𝜙). (7)

Theorem 3 (Convergence of fine-tuning task). Let Ldown (𝜃, 𝜙) be the downstream loss after fine-tuned with pre-trained model’s parameter 𝜃
and downstream classifier’s parameter 𝜙. Given that L∗down is the optimal downstream loss, we can obtain the upper bound as follows:

Ldown (𝜃, 𝜙) − L∗down < 𝑂
(
Ldown (𝜃0, 𝜙0) − L∗down

)
, (8)

where 𝜃0, 𝜙0 are the initial parameters of pre-trained model and downstream classifier before fine-tuning, which vary across different approaches.
In particular, in our two-stage approach, 𝜃0, 𝜙0 are the parameters given by the pre-trained model refinement; while in naïve fine-tuning, they
refer to the parameters given by the pre-trained model.

Proof of Theorem 3. Let Ldown (𝜃, 𝜙) be a 𝛽-smooth, 𝜇-strongly convex function for 𝜇 > 0. Since Ldown (𝜃, 𝜙) is 𝛽-smooth, we could derive
that

1
2𝛽
∥∇Ldown (𝜃, 𝜙)∥22 ≤ Ldown (𝜃, 𝜙) − L∗down

We can also prove that
1

2𝜇
∥∇Ldown (𝜃, 𝜙)∥22 ≥ Ldown (𝜃, 𝜙) − L∗down

Putting this all together,

Ldown (𝜃𝑘+1, 𝜙𝑘+1) − L∗down ≤ Ldown (𝜃𝑘 , 𝜙𝑘) − L∗down −
1

2𝛽
∥∇Ldown (𝜃𝑘 , 𝜙𝑘)∥22

≤ Ldown (𝜃𝑘 , 𝜙𝑘) − L∗down −
𝜇

𝛽

(
Ldown (𝜃𝑘 , 𝜙𝑘) − L∗down

)
=

(
1 − 𝜇

𝛽

) (
Ldown (𝜃𝑘 , 𝜙𝑘) − L∗down

)
.

So, applying this bound repeatedly gives us

Ldown (𝜃𝑘 , 𝜙𝑘) − L∗down ≤
(
1 − 𝜇

𝛽

)𝑘 (
Ldown (𝜃0, 𝜙0) − L∗down

)
. (9)

For simplicity, we denote the downstream loss after 𝑘-step optimization Ldown (𝜃𝑘 , 𝜙𝑘) as Ldown (𝜃, 𝜙). Therefore, we obtain the following
inequality.

Ldown (𝜃, 𝜙) − L∗down ≤ 𝑂
(
Ldown (𝜃0, 𝜙0) − L∗down

)
. (10)

By combining Theorem 2 and Theorem 3, we can deduce that our two-stage approach has a stronger guarantee of converging to the optimum
of the downstream task compared to naïve fine-tuning, since Ldown (𝜃0, 𝜙0) ≥ Ldown

(
𝜃′0, 𝜙0

)
.

Theoretical Connection between Representation Consistency and other metrics. In this section, we further explore the connection
between the representation consistency and other metrics. Here, we first analyze the connection between representation consistency and the
mean difference of distribution in Figure 4. An intuitive idea that comes to mind is that we can utilize the representation consistency as a
metric to boost downstream performance if it is beneficial. Given the representation consistency, we are curious whether a larger representation
consistency could indeed benefit the downstream performance. Motivated by Figure 4, we think that a better downstream performance can be
achieved by pulling apart the representation similarity distributions of negative pairs (in pre-training task) with the same label and different
labels (i.e., the mean difference annotated in Figure 4). Therefore, we here establish a theoretical connection between the representation
consistency and the mean difference of the above-mentioned distributions.



Theorem 4 (Connection between representation consistency and mean difference of distributions in Figure 4). Let CR (H ,D,P) be the
representation consistency. Given that the pre-training task is contrastive learning, we have

1
2( |𝑉 | − 1)Δ

′ + |𝑉 | − 5
|𝑉 | − 1

≥ CR (H ,D,P) ≥
1

2( |𝑉 | − 1)Δ
′ − |𝑉 | − 5
|𝑉 | − 1

, (11)

where Δ′ represents the mean difference in two representation similarity distributions of negative pairs (in pre-training task), whose two nodes
are the same class and different classes in the downstream task, respectively (i.e, the mean difference annotated in Figure 4), and |𝑉 | denotes
the number of nodes in the downstream graph.
Proof of Theorem 4. Let CR (H ,D,P) be the representation consistency. Δ′ = E𝒏 [Sim(ℎ(𝒏)) |𝑦∗P (𝒏) = 0, 𝑦∗D (𝒏) = 1] −
E𝒏 [Sim(ℎ(𝒏)) |𝑦∗P (𝒏) = 0, 𝑦∗D (𝒏) = 0], where 𝒏 ∈ V × V. Given that the pre-training task is contrastive learning, we can deduce
that

CR (H ,D,P) =E𝒏 [𝜌Sim(ℎ(𝒏)) |𝑦∗P (𝒏) = 𝑦
∗
D (𝒏)]

=E𝒏 [Sim(ℎ(𝒏)) |𝑦∗P (𝒏) = 𝑦
∗
D (𝒏), 𝑦

∗
P (𝒏) = 1]

− E𝒏 [Sim(ℎ(𝒏)) |𝑦∗P (𝒏) = 𝑦
∗
D (𝒏), 𝑦

∗
P (𝒏) = 0] .

(12)

Since contrastive learning takes two different (same) nodes as a negative (positive) pair, we have

E𝒏 [Sim(ℎ(𝒏)) |𝑦∗P (𝒏) = 1, 𝑦∗P (𝒏) = 1] = |𝑉 |/
(
|𝑉 |
2

)
= 2/(|𝑉 | − 1),

E𝒏 [Sim(ℎ(𝒏)) |𝑦∗P (𝒏) = 0]) ≥E𝒏 [−1|𝑦∗P (𝒏) = 0])

= − (1 − |𝑉 |/
(
|𝑉 |
2

)
) = |𝑉 | − 3
|𝑉 | − 1

.

Accordingly, we can obtain
CR (H ,D,P) =E𝒏 [Sim(ℎ(𝒏)) |𝑦∗P (𝒏) = 𝑦

∗
D (𝒏), 𝑦

∗
P (𝒏) = 1]

− E𝒏 [Sim(ℎ(𝒏)) |𝑦∗P (𝒏) = 𝑦
∗
D (𝒏), 𝑦

∗
P (𝒏) = 0]

=
2

|𝑉 | − 1
E𝒏 [Sim(ℎ(𝒏)) |𝑦∗D (𝒏) = 0]

− |𝑉 | − 3
|𝑉 | − 1

E𝒏 [Sim(ℎ(𝒏)) |𝑦∗D (𝒏) = 1]

≥ 1
2( |𝑉 | − 1)Δ

′ − |𝑉 | − 5
|𝑉 | − 1

,

(13)

where 𝒏 ∈ V ×V. In Eq. (12), Δ′ represent the expectation difference on the marginal distribution of representation similarity of the same
label pair and the different label pair when 𝑦∗P (𝒏) = 0.

Besides, we can further deduce the upper bound for representation consistency.

CR (H ,D,P) =E𝒏 [𝑆𝑖𝑚(ℎ(𝒏)) |𝑦∗P (𝒏) = 𝑦
∗
D (𝒏), 𝑦

∗
P (𝒏) = 1]

− E𝒏 [𝑆𝑖𝑚(ℎ(𝒏)) |𝑦∗P (𝒏) = 𝑦
∗
D (𝒏), 𝑦

∗
P (𝒏) = 0]

=
2

|𝑉 | − 1
E𝒏 [𝑆𝑖𝑚(ℎ(𝒏)) |𝑦∗D (𝒏) = 0]

− |𝑉 | − 3
|𝑉 | − 1

E𝒏 [𝑆𝑖𝑚(ℎ(𝒏)) |𝑦∗D (𝒏) = 1]

≤ 1
2( |𝑉 | − 1)Δ

′ + |𝑉 | − 5
|𝑉 | − 1

,

(14)

The above theorem suggests that a high representation consistency cannot be achieved without a large difference between the representation
similarity distributions of negative pairs with the same label and different labels. This provides clues on how to improve the downstream
performance.

Then, we analyze the connection between the representation consistency and inter-class distance (Gu, Li, and Han 2012). We find that the
lower bound of representation consistency can be expressed by inter-class distance.
Theorem 5 (Theoretical connection between representation consistency and inter-class distance.). Let 𝐺down = {𝑉, 𝐸} denote the downstream
graph. CR (H ,D,P) is the representation consistency, and 𝑑inter is the inter-class distance. The lower bound of CR (H ,D,P) presents an
expression of 𝑑inter, i.e.,

CR (H ,D,P) ≥
1

4( |𝑉 | − 1) 𝑑inter −
|𝑉 | − 5
|𝑉 | − 1

.

Proof. Let 𝐺down = {𝑉, 𝐸} denote the downstream graph. Each node 𝑣𝑖 is associated with node representation ℎ(𝑣𝑖) from model and label
𝑦(𝑣𝑖) ∈ Y = {𝑐0, . . . , 𝑐𝑁 }, where Y is the label space and 𝑁 is the number of classes in Y. The set of nodes with the label 𝑐 ∈ Y is



denoted as 𝑉𝑐 . We assume that the representation of the node in 𝑉𝑐 obeys the multivariate normal distribution, that is the node representation
ℎ𝑐 ∼ N(𝜇𝑐 , Σ𝑐). In this way, 𝑑inter can be expressed as

∑
𝑐≠𝑐′&𝑐,𝑐′∈Y

| (𝜇𝑐 − 𝜇𝑐′ )T (𝜇𝑐 − 𝜇𝑐′ ) |.

Now we discuss the expectation of cosine similarity between nodes of different labels 𝑐 and 𝑐′ (𝑐 ≠ 𝑐′). Accordingly, ℎ𝑐 ∼ N(𝜇𝑐 , Σ𝑐)
and ℎ𝑐′ ∼ N(𝜇𝑐′ , Σ𝑐′ ). To simplify the derivation, all the representation vectors are normalized to 1. In this way, we have | |ℎ𝑐 | | = 1 and
| |𝜇𝑐 | | = |E(ℎ𝑐) | ≤ E( | |ℎ𝑐 | |) = 1 for Jensen inequality. The derivation is shown below:

E(Sim(ℎ𝑐 , ℎ𝑐′ )) =E(ℎT
𝑐 ℎ𝑐′/| |ℎ𝑐 | | | |ℎ𝑐′ | | = E(ℎT

𝑐 I ℎ𝑐′ )
=𝜇T
𝑐 I 𝜇𝑐′ + 𝑇𝑟 (I ∗ Cov(ℎ𝑐 , ℎ𝑐′ ))

=𝜇T
𝑐 𝜇𝑐′ + 𝑇𝑟 (Cov(ℎ𝑐 , ℎ𝑐′ )).

(15)

The similarity divergence 𝐷 (𝑐, 𝑐′) between same label pair (𝑐, 𝑐) and different label pair (𝑐, 𝑐′) can be expressed as follows:

𝐷 (𝑐, 𝑐′) =|E(𝑆𝑖𝑚(ℎ𝑐 , ℎ𝑐′ )) − E(𝑆𝑖𝑚(ℎ𝑐 , ℎ𝑐)) |
=|𝜇T

𝑐 𝜇𝑐′ + 𝑇𝑟 (Cov(ℎ𝑐 , ℎ𝑐′ ))
− 𝜇T

𝑐 𝜇𝑐 − 𝑡𝑟 (Cov(ℎ𝑐 , ℎ𝑐)) |
=|𝜇T

𝑐 (𝜇𝑐′ − 𝜇𝑐) + 𝑇𝑟 (Cov(ℎ𝑐 , ℎ𝑐′ ) − Cov(ℎ𝑐 , ℎ𝑐)) |.

(16)

The similarity divergence object should also be symmetrical that 𝐷 (𝑐, 𝑐′) and 𝐷 (𝑐′, 𝑐) should be the same. Therefore, the symmetric
similarity divergence 𝐷′ is shown as follows:

𝐷′ (𝑐, 𝑐′) =1/2(𝐷 (𝑐, 𝑐′) + 𝐷 (𝑐′, 𝑐))
=1/2( |𝜇T

𝑐 (𝜇𝑐′ − 𝜇𝑐) + 𝑇𝑟 (Cov(ℎ𝑐 , ℎ𝑐′ ) − Cov(ℎ𝑐 , ℎ𝑐)) |
+ |𝜇T

𝑐′ (𝜇𝑐 − 𝜇𝑐′ ) + 𝑇𝑟 (Cov(ℎ𝑐′ , ℎ𝑐) − Cov(ℎ𝑐′ , ℎ′𝑐)) |)
=1/2( |𝜇T

𝑐 (𝜇𝑐′ − 𝜇𝑐) + 𝑇𝑟 (Cov(ℎ𝑐 , ℎ𝑐′ ) − Cov(ℎ𝑐 , ℎ𝑐)) |
+ |𝜇T

𝑐′ (𝜇𝑐 − 𝜇𝑐′ ) + 𝑇𝑟 (Cov(ℎ𝑐′ , ℎ𝑐) − Cov(ℎ𝑐′ , ℎ𝑐′ )) |)
≥1/2| (𝜇𝑐 − 𝜇𝑐′ )T (𝜇𝑐 − 𝜇𝑐′ )
+ 𝑇𝑟 (−2Cov(ℎ𝑐 , ℎ𝑐′ ) + Σ𝑐 + Σ𝑐′ ) |.

(17)

For simplicity, we just ignore the Σ part since the feature is extracted from the same model and the correlation between each dimension of
feature is similar. In this way, Σ𝑐 = Σ𝑐′ = Cov(ℎ𝑐 , ℎ𝑐′ ),

𝐷′ (𝑐, 𝑐′) =1/2(𝐷 (𝑐, 𝑐′) + 𝐷 (𝑐′, 𝑐))
≥1/2| (𝜇𝑐 − 𝜇𝑐′ )T (𝜇𝑐 − 𝜇𝑐′ ) − 𝑇𝑟 (2Cov(ℎ𝑐 , ℎ𝑐′ ) + Σ𝑐 + Σ𝑐′ ) |
≥1/2| (𝜇𝑐 − 𝜇𝑐′ )T (𝜇𝑐 − 𝜇𝑐′ ) |.

(18)

The combination of different label pairs that denotes the divergence of cosine similarity which is the same as the mean difference Δ′ is as
follows:

Δ′ =
∑︁

𝑐,𝑐′∈Y
𝐷′ (𝑐, 𝑐′)

=
∑︁

𝑐,𝑐′∈Y&𝑐=𝑐′
𝐷′ (𝑐, 𝑐′) +

∑︁
𝑐,𝑐′∈Y&𝑐≠𝑐′

𝐷′ (𝑐, 𝑐′)

≥1/2
∑︁

𝑐,𝑐′∈Y&𝑐≠𝑐′
| (𝜇𝑐 − 𝜇𝑐′ )T (𝜇𝑐 − 𝜇𝑐′ ) | = 𝑑inter.

(19)

By Theorem 4 proved above, CR (H ,D,P) ≥ 1
2( |𝑉 |−1) Δ

′ − |𝑉 |−5
|𝑉 |−1 . And the left hand side is the objective for mean difference. Thus, we can

get that:

CR (H ,D,P) ≥
1

2( |𝑉 | − 1)Δ
′ − |𝑉 | − 5
|𝑉 | − 1

≥ 1
4( |𝑉 | − 1) 𝑑inter −

|𝑉 | − 5
|𝑉 | − 1

.

(20)

From Eq. (20), we can gain insight that the left hand side is the objective for Bridge-Tune which is representation consistency. The right hand
side is the inter-class distance between each label, which means the inter-class distance can also be feasible to improve the representation
consistency by optimizing the lower bound.


