When to Pre-Train Graph Neural Networks? From Data Generation Perspective! Yuxuan Cao*1, Jiarong Xu*2, Carl Yang3, Jiaan Wang4, Yunchao Zhang1, Chunping Wang5, Lei Chen5, Yang Yang1 1 Zhejiang University, 2 Fudan University, 3 Emory University, 4 Soochow University, 5 Finvolution Group * Equal contribution. #### **Motivation** - To avoid the negative transfer, recent efforts focus on what to pre-train and how to pre-train. However, the transferability from pre-training data to downstream data cannot be guaranteed in some cases. - It is a necessity to understand when to pre-train, i.e., under what situations the "graph pre-train and fine-tune" paradigm should be adopted. - Existing methods train and evaluate on all candidates of pre-training models and fine-tuning strategies, which is very costly. We propose a W2PGNN framework to answer when to pre-train GNNs from a graph data generation perspective. (a) Existing methods make costly "pre-train and fine-tune" attempts. without "pre-train and proposed fine-tune" attempts "feasibility of W2PGNN pre-training" (b) W2PGNN tells the feasibility of pre-training before "pre-train and fine-tune". #### **W2PGNN** Framework #### **Application Cases** - Provide the application scope of a graph pre-trained model. - Estimate the **feasibility** of performing pre-training for a downstream. - Pre-training data selection to benefit the downstream. Key Insight: Downstream data can benefit from pre-training data (i.e., has high feasibility of performing pre-training), if it can be generated with high probability by a graph generator that summarizes the transferable patterns of pre-training data. Figure: Illustration of our proposed framework W2PGNN to answer when to pre-train GNNs. #### **input space:** ego-networks (node-level) & graphs (graph-level) # generator space: - a graphon basis B_i (i.e., generator) fitted from a set of (sub)graphs with similar patterns. each B_i is assigned with a corresponding weight α_i . - weighted combination of generator basis $f(\{\alpha_i\}, \{B_i\}) =$ $\sum_{i=1}^{K} \alpha_i B_i$ - generator space: all weighted combinations Ω $\{f(\{\alpha_i\}, \{B_i\}) | \forall \{\alpha_i\}, \{B_i\}\}\}$ **possible downstream space:** # all the graphs produced by the generators in the generator space $D = \{G \leftarrow f | f \in \Omega\}$. ### **Feasibility Definition & Approximation** ### Definition[feasibility of performing pre-training]: $$\zeta(\mathcal{G}_{\mathrm{train}} \to \mathcal{G}_{\mathrm{down}}) = \sup_{\{\alpha_i\}, \{B_i\}} \Pr(\mathcal{G}_{\mathrm{down}} \mid f(\{\alpha_i\}, \{B_i\}))$$ highest probability of the downstream data generated from a generator in the generator space **Problem**: Exhausting all possible $\{\alpha_i\}$, $\{B_i\}$ is impractical. # Approximated feasibility : $$\zeta \leftarrow -\operatorname{MIN}\left(\left\{\inf_{\{\alpha_i\}}\operatorname{dist}(f(\{\alpha_i\},\{B_i\}),B_{\operatorname{down}}), \forall \{B_i\} \in \mathcal{B}\right\}\right),$$ $$\square \text{ reduced generator basis space} \Rightarrow \text{integrated basis } \left\{B_i\right\}_{\operatorname{integral}}$$ $\mathcal{B} = \left\{ \{B_i\}_{\text{topo}}, \{B_i\}_{\text{domain}}, \{B_i\}_{\text{integr}} \right\} \succ \text{domain basis } \left\{B_i\right\}_{\text{domain}}$ $\succ \text{topological basis } \left\{B_i\right\}_{\text{topo}}$ $\square\{\alpha_i\}$ is learnable parameter ### **Theoretical Analysis** #### ■An illustrative example Assume a collection of pre-training graphs fit into a generator basis $\{B_1, B_2, B_3\}$, with corresponding key transferable patterns , and , respectively. Their convex combination gives rise to a mixed generator $f(\{\alpha_i\}, \{B_i\}) = \sum_{i=1}^K \alpha_i B_i$. #### ☐ Theoretical Justification of Generator Space. The following theory proves that all these three transferable patterns (, and) and their mixtures can occur frequently in the mixed generator with high probability. Theorem 5.2. Assume a graphon basis $\{B_1, \dots, B_k\}$ and their convex combination $f(\{\alpha_i\}, \{B_i\}) = \sum_{i=1}^k \alpha_i B_i$. The a-th element of graphon basis B_a corresponds to a motif set. For each motif F_a in the motif set, the difference between the homomorphism density of F_a in $f(\{\alpha_i\}, \{B_i\})$ and that in basis element B_a is upper bounded by $$|t(F_a, f(\{\alpha_i\}, \{B_i\})) - t(F_a, B_a)| \le \sum_{b=1, b \ne a}^k |F_a|\alpha_b||B_b - B_a||_{\square}$$ (8) where $|F_a|$ represents the number of nodes in motif F_a , $||\cdot||_{\square}$ is the cut norm. #### ☐ Theoretical Justification of Possible downstream Space. The following theory proves that all graphs generated from generator space preserve a mixture of key transferable patterns in mixed generator, e.g., a mixture of \mathbb{A} and \mathbb{H} : \mathbb{A} . Theorem 5.3. Given a graph generator $f(\{\alpha_i\}, \{B_i\})$, we can obtain sufficient number of random graphs $\mathbb{G} = \mathbb{G}(n, f(\{\alpha_i\}, \{B_i\}))$ with n nodes generated from $f(\{\alpha_i\}, \{B_i\})$. The homomorphism density of graph motif F in \mathbb{G} can be considered approximately equal to that in $f(\{\alpha_i\}, \{B_i\})$ with high probability and can be represented as $$P(|t(F,\mathbb{G}) - t(F, f(\{\alpha_i\}, \{B_i\}))| > \varepsilon) \le 2 \exp\left(-\frac{\varepsilon^2 n}{8v(F)^2}\right), \quad (9)$$ where v(F) denotes the number of nodes in F, and $0 \le \epsilon \le 1$. ### **Experiment Results** - **Q1**: Is the feasibility of pre-training estimated by W2PGNN positively correlated with the downstream performance (application case of feasibility)? - ☐ Table: Pearson correlation coefficient between the estimated feasibility and the best downstream performance on node classification. N denotes the number of candidate pre-training datasets (i.e., select budget) that form the pre-training data. | | N=2 | | | | | N = 3 | | | | | | |-----------------------------|------------|----------------|---------|-----------|------|------------|----------------|---------|-----------|------|--| | | US-Airport | Europe-Airport | H-index | Chameleon | Rank | US-Airport | Europe-Airport | H-index | Chameleon | Rank | | | Graph Statistics | -0.6068 | 0.3571 | -0.6220 | -0.2930 | 10 | -0.7096 | -0.5052 | -0.2930 | -0.8173 | 10 | | | EGI | 0.0672 | -0.6077 | -0.2152 | -0.2680 | 9 | -0.2358 | -0.5540 | -0.2822 | -0.6511 | 9 | | | Clustering Coefficient | -0.0273 | 0.1519 | 0.3622 | 0.3130 | 5 | -0.0039 | 0.2069 | 0.4829 | 0.2279 | 4 | | | Spectrum of Graph Laplacian | -0.2023 | 0.1467 | 0.0794 | 0.0095 | 8 | -0.7648 | -0.4311 | 0.2611 | -0.2300 | 8 | | | Betweenness Centrality | -0.2739 | -0.2554 | 0.2051 | 0.2241 | 7 | -0.3421 | -0.5903 | 0.1364 | 0.0849 | 7 | | | W2PGNN (intergr) | 0.3579 | 0.1224 | 0.3313 | 0.1072 | 6 | 0.0841 | 0.5310 | 0.4213 | -0.0916 | 6 | | | W2PGNN (domain) | 0.4774 | 0.4666 | 0.6775 | 0.3460 | 3 | 0.7132 | 0.5523 | 0.7381 | 0.1857 | 3 | | | W2PGNN (topo) | 0.2059 | 0.3908 | 0.3745 | 0.4464 | 4 | 0.4900 | 0.5061 | 0.4072 | 0.1497 | 5 | | | W2PGNN ($\alpha = 1$) | 0.4172 | 0.5206 | 0.6829 | 0.4391 | 2 | 0.5282 | 0.6663 | 0.7240 | 0.3246 | 1 | | | W2PGNN | 0.3941 | 0.5336 | 0.7162 | 0.4838 | 1 | 0.5089 | 0.6706 | 0.6754 | 0.3166 | 2 | | - The feasibility estimated by W2PGNN achieve the highest overall ranking in most cases! - ☐ Figure: Estimated feasibility (in x-axis) versus the best downstream performance (in y-axis) of all pre-training data, downstream data> pairs on node classification when select budget is 2. ☐ Figure: Estimated feasibility (in x-axis) versus the best downstream performance (in y-axis) of all pre-training data, downstream data> pairs on node classification when select budget is 3. - feasibility and the best downstream performance! **Q2**: Does the pre-training data selected by W2PGNN - actually help improve the downstream performance (application case of data selection)? - ☐ Table: Node classification results when performing pre-training on different selected pre-training data. "All Datasets" refers to the results of using all pre-training data without selection. | | | N=2 | | | | N=3 | | | | | | |---|-----------------------------|------------|----------------|---------|-----------|------|------------|----------------|---------|-----------|------| | | | US-Airport | Europe-Airport | H-index | Chameleon | Rank | US-Airport | Europe-Airport | H-index | Chameleon | Rank | | 1 | All Datasets | 65.62 | 55.65 | 75.22 | 46.81 | - | 65.62 | 55.65 | 75.22 | 46.81 | - | | | Graph Statistics | 64.20 | 53.36 | 74.30 | 44.31 | 4 | 62.27 | 54.58 | 72.88 | 43.87 | 5 | | | EGI | 64.96 | 57.37 | 74.30 | 43.21 | 2 | 62.27 | 57.36 | 72.88 | 45.93 | 3 | | | Clustering Coefficient | 62.61 | 52.87 | 77.74 | 43.21 | 3 | 62.94 | 54.58 | 75.18 | 44.66 | 4 | | | Spectrum of Graph Laplacian | 61.76 | 57.88 | 73.14 | 42.20 | 5 | 63.95 | 54.87 | 73.90 | 44.66 | 2 | | | Betweenness Centrality | 64.96 | 52.87 | 73.50 | 41.63 | 6 | 62.27 | 54.87 | 75.18 | 43.87 | 6 | - (2) W2PGNN 1 Using all pre-training data for pre-training is not always a - reliable choice. 2 Pre-training data selected by W2PGNN ranks first.