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Abstract
Recent prevailing works on graph machine learning typically fol-
low a similar methodology that involves designing advanced vari-
ants of graph neural networks (GNNs) to maintain the superior
performance of GNNs on different graphs. In this paper, we aim
to streamline the GNN design process and leverage the advan-
tages of Large Language Models (LLMs) to improve the perfor-
mance of GNNs on downstream tasks. We formulate a new para-
digm, coined “LLMs-as-Consultants”, which integrates LLMs with
GNNs in an interactive manner. A framework named LOGIN (LLM
cOnsulted GNN traINing) is instantiated, empowering the inter-
active utilization of LLMs within the GNN training process. First,
we attentively craft concise prompts for spotted nodes, carrying
comprehensive semantic and topological information, and serving
as input to LLMs. Second, we refine GNNs by devising a com-
plementary coping mechanism that utilizes the responses from
LLMs, depending on their correctness. We empirically evaluate the
effectiveness of LOGIN on node classification tasks across both ho-
mophilic and heterophilic graphs. The results illustrate that even ba-
sic GNN architectures, when employed within the proposed LLMs-
as-Consultants paradigm, can achieve comparable performance to
advanced GNNs with intricate designs. Our code is available at
https://github.com/QiaoYRan/LOGIN.

∗Corresponding author.
†Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS).
‡Key Lab of AI Safety, Chinese Academy of Sciences. Xiang Ao is also at Institute of
Intelligent Computing Technology, Suzhou, China.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

WSDM ’25, March 10–14, 2025, Hannover, Germany
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1329-3/25/03
https://doi.org/10.1145/3701551.3703488

CCS Concepts
• Information systems→ Data mining.

Keywords
Large Language Model; Graph Neural Network

ACM Reference Format:
Yiran Qiao, Xiang Ao, Yang Liu, Jiarong Xu, Xiaoqian Sun, and Qing He.
2025. LOGIN: A Large Language Model Consulted Graph Neural Network
Training Framework. In Proceedings of the Eighteenth ACM International
Conference on Web Search and Data Mining (WSDM ’25), March 10–14, 2025,
Hannover, Germany. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3701551.3703488

1 Introduction
Graph structures, due to their extensive ability to represent indi-
vidual entities and respective interactions, are widely used in fields
such as recommendation [3, 38, 60], anomaly detection [29, 34, 68],
drug discovery [36, 48, 54], and etc [6, 20]. Recently, thanks to
the advent of graph neural networks (GNNs) [18, 28, 52] and their
demonstrated powerful capabilities, graph machine learning has
become a highly active field drawing significant research attention.

Among these existing works, most of them strive to design dif-
ferent architectures of GNNs to adapt to distinct graph types. The
reason for that is the broad real-world sources of graph data induce
considerable diversity across different graphs. One of the basic
categorizations, for example, could be the case of homophily and
heterophily [45]. Classic GNNs, due to their fundamental mecha-
nisms of message passing and aggregation [4], have demonstrated
superior performance on homophilic graphs but fail to generalize to
heterophily scenarios where dissimilar nodes are connected [33, 69].
Consequently, researchers have committed to developing various
structures, aiming at improving the effectiveness of GNNs on par-
ticular types of graphs [30, 33, 42]. Despite their various routes
of the existing works, these methods hold a similar methodology:
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Design a specialized variant of graph neural networks to tackle
analysis tasks on specific types of graphs.

However, designing GNN variants for real-world applications
often involves extensive trial and error, requiring both theoretical
understanding and practical business insights. While tailored for
specific scenarios, these variants generally don’t deviate signifi-
cantly from classic GNN models in terms of fundamental mecha-
nisms [70]. This raises the question of whether classic GNNs can
be optimized to address various scenarios effectively.

In this paper, our objective is to empower classic GNNs for con-
sistently superior performance on graphs with varying characteris-
tics. To this end, an influential off-shelf tool, the Large Lanuange
Model (LLM), is adopted to help us achieve the goal. LLMs cur-
rently have not only achieved remarkable advancements in natural
language processing [7, 51], but have also buoyed promising in-
sights in other domains, such as computer vision [2, 32, 35] and
recommendation systems [31, 44, 71], etc. This success can be at-
tributed to the wealth of open-world knowledge stored in their
large-scale parameters [40, 66] and the emerging capabilities in
logical reasoning [7, 24].

Analogously, we aim to leverage the advantages of LLMs to
enhance graph machine learning, particularly the capacities of
GNNs. Some pioneering research has explored the potential of
LLMs on graph data, which can be typically categorized into LLMs-
as-Predictors and LLMs-as-Enhancers, as shown in Fig. 1 (a) and
(b). For the first kind, taking the node classification task as an
example, some researchers harness the zero-shot and few-shot
reasoning ability of LLMs to directly obtain node labels [14, 17,
53, 64]. Others apply instruction tuning or prefix tuning to adapt
LLMs specifically for graph tasks [8, 50, 59]. However, most of
them disregard the advantages of GNNs, and tuning LLMs may
require substantial computing resources as well. For the latter one,
LLMs-as-Enhancers, the LLMs are commonly utilized to enhance
nodes’ semantic features [11, 13, 22] or to refine local topological
structures [49]. This kind of route is straightforward to apply LLMs
in data preprocessing as a one-time enhancer, failing to couple the
LLMs and GNNs interactively.
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Figure 1: The paradigms for integrating LLMs with graphs.

Different from the existing works, we formulate a new paradigm
that integrates LLMs with GNNs in an interactive manner, and
we coin it “LLMs-as-Consultants” (c.f. Fig. 1 (c)), following which,
LLMs could explicitly contribute to the training process of GNN.

Under this paradigm, we propose a framework named LOGIN,
short for LLM cOnsulted GNN traINing, empowering the interac-
tive utilization of LLMs within the GNN training process. As an

interactive approach, the crucial issues of LOGIN lie in what GNNs
should deliver to LLMs and how to feed the LLMs’ responses back
to GNNs. First, for LLMs’ inputs, we delve into prompt engineering
to craft concise prompts for spotted nodes, which carry comprehen-
sive semantic and topological information. Second, to utilize the
responses from LLMs, we devise a complementary coping mech-
anism depending on their correctness. Specifically, compared to
ground truth labels, when LLMs predict correctly, we update node
features to obtain semantic enhancement. Otherwise, we impute
the misclassification to the potential presence of local topological
noises, hence performing structure refinement. Besides, particu-
lar criteria may serve in the selection of essential nodes to reduce
complexity. In our implementation, we adopt GNN predictive un-
certainty to assess the necessity of consulting LLMs.

We explore the effectiveness of LOGIN on node classification
tasks across both homophilic and heterophilic graphs. By empiri-
cal studies, we illustrate that even classic GNNs, when employed
within the proposed LLMs-as-Consultants paradigm, can achieve
comparable performance to advanced GNNs with intricate designs.

The contributions of this paper can be summarized as follows.
• To our knowledge, we are the first to propose the LLMs-as-
Consultants paradigm of graph machine learning. Different
from previous works, we integrate the power of LLMs interac-
tively into GNN training.
• Under this paradigm, we propose the LLM cOnsulted GNN
traINing (LOGIN) framework. This framework can be consid-
ered as a synthesis of previous methodologies, with a particu-
larly tailored feedback strategy concerning the correctness of
responses.
• Experiments on six node classification tasks with both ho-
mophilic and heterophilic graphs demonstrate the effective-
ness and generalizability of LOGIN.

2 Related Works
2.1 GNN Variants
Early GNNs [18, 28, 52] were designed for typical graph-structured
data like citation networks, which are homophilic, homogeneous,
and class-balanced. Homophily means that nodes with similar at-
tributes are more likely to connect [19, 45]. Homogeneous graphs
contain the same types of entities and relations [56, 62]. Class bal-
ance refers to an even distribution of classes within a graph [26, 65].
Consequently, classic GNNs struggle with performance degradation
when generalized to heterophilic [1, 5, 10, 58], heterogeneous [15,
56, 61, 62], and class-imbalanced graphs [9, 34, 41, 43, 47, 65]. How-
ever, these three characteristics are common in real-world graphs.
To maintain the superiority of GNN performance in such scenarios,
researchers have tailored classic GNNs into specific variants.

GNNs Designed for Heterophily. For heterophily, since similar
nodesmay not tend to bond, twomajor designs for GNNvariants are
neighbor extension and GNN architecture refinement. For neighbor
extension, MixHop [1] and H2GCN [69] aggregate information
across multi-hop ego-graphs. For GNN architecture refinement,
JKNet [58], H2GCN [69], and GCNII [10] combine intermediate
representations from each layer, allowing flexible adaptation of
neighborhood ranges to individual nodes. ACMGCN [37] designs
adaptive filters for spectral GNNs to capture high-frequency signals.
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GNNs Designed for Heterogeneity. For GNN variants targeting
heterogeneity, suitable aggregation mechanisms that better fuse
the heterogeneous information were proposed [55]. To name some,
HAN [56] develops a hierarchical attention mechanism to capture
both the structural and semantic information within heterogeneous
graphs. HetGNN [62] uses bi-LSTM to aggregate neighbor embed-
dings and learn deep interactions among heterogeneous nodes.
GTN [61] proposes an aggregation function to automatically dis-
cover suitable metapaths during message passing.

GNNs Designed for Class Imbalance. For class imbalance, the goal
is to design a GNN variant that effectively handles both majority
and minority classes [26]. For example, GraphSMOTE [65] uses
synthetic oversampling in the embedding space to enhanceminority
class representation. ImGAGN [43] and GraphENS [41] generate
synthetic minority nodes, while PC-GNN [34] uses a label-balanced
sampler for sub-graph training and a neighborhood sampler to
balance the local topology.

Theoretically, these GNN variants are not fundamentally differ-
ent from the classic GNNs [70]. Practically, designing them to work
requires extensive manual experimentation over a long period. Our
work aims to leverage LLMs to optimize GNNs, enhancing the per-
formance of GNNs across various graphs, and ultimately matching
or even surpassing these intricately designed GNN variants.

2.2 LLMs for Graphs
The emergence of LLMs has inspired many explorations of utilizing
LLMs for graph-structured data, mainly in two paradigms: LLMs-
as-Predictors and LLMs-as-Enhancers.

LLMs-as-Predictors. Representative methods following this par-
adigm, e.g. NLGraph [53], GPT4Graph [17], GraphQA [14] and
GraphText [64], attempt to harness the zero-shot and few-shot
ability, along with the in-context learning ability to solve graph
tasks by describing the graph structural topology in natural lan-
guage. However, the complex global graph structure can hardly
be compressed in a token-limited prompt, thereby utilizing LLMs
solely only achieves the performance far from desired. Besides di-
rectly prompting LLMs, GraphLLM [8] conducts prefix tuning on
an open-source LLM by concatenating graph-specific prefixes to
its attention layers. InstructGLM [59] and GraphGPT [50] adapt
LLMs for graph downstream tasks through instruction tuning, em-
ploying natural language and a graph-text aligner to express graph
structural information, respectively. Nevertheless, neglecting the
authenticated power of existing GNNs results in only moderate
performance or substantial computing resource consumption.

LLMs-as-Enhancers. Different from the former paradigm, the
LLMs-as-Enhancers paradigm incorporates LLMs to enhance input
graphs before GNN training. For example, TAPE [22] and Graph-
LLM [11] enhance GNN node features by prompting LLMs with
node texts. SimTeG [13] applies LoRA [23] for parameter-efficient
fine-tuning of LLMs on graph textual corpora to improve node
representations. LLM-TSE [49] explicitly instructs LLMs to produce
a similarity score for two texts of two nodes, which subsequently
leads to edge pruning. This methodology employs LLMs only as a
one-time data preprocessor before GNN training.

In contrast to these two paradigms, our LLMs-as-Consultants
paradigm integrates LLMs directly into GNN training, consulting

LLMs on a subset of uncertain nodes identified by GNNs, to enhance
GNN performance with acceptable additional resource usage.

3 Preliminaries
3.1 Text-Attributed-Graphs (TAGs)
Text-attributed graphs (TAGs) are widely used in previous research
on LLMs for graphs. A TAG can be formulated as:

G =
(
V,A, {𝑠𝑛}𝑛∈V

)
, (1)

whereV is a set of 𝑁 nodes, A ∈ {0, 1}𝑁×𝑁 denotes the adjacency
matrix, and 𝑠𝑛 ∈ D𝐿𝑛 is the text attached to node 𝑛 ∈ V , with
D as the word dictionary, and 𝐿𝑛 as the text length. Note that
our proposed framework is not limited to traditional TAGs that
literally have texts as original attributes. In fact, most entities and
their relations can be modeled and processed as graphs, and their
characteristics can be expressed in text form.

3.2 Graph Neural Networks (GNNs)
For GNN training, the texts associated with the nodes should be en-
coded to an embedded space. We represent the node embeddings as
X ∈ R𝑁×𝐷 , in which each row 𝑥𝑛 denotes the corresponding node
embedding, with𝐷 as its dimension number. For node classification,
GNNs aggregate information from a node’s neighbors, and then
update the node representation with the aggregated information.
The 𝑘-th layer of a GNN can be formalized as:

𝑥
(𝑙 )
𝑖

= 𝑓 (𝑙 ) ((AGG(𝑙 )
𝑗∈N(𝑖 )𝑥

(𝑙−1)
𝑗
), 𝑥 (𝑙−1)

𝑖
), (2)

where 𝑥 (𝑙 )
𝑖
∈ R𝐷 denotes the representation of the 𝑖-th node in

the 𝑙-th layer representation, with N(𝑖) as its neighborhood. In
addition, AGG(𝑙 ) is a function operator that is differentiable, and
𝑓 (𝑙 ) represents the certain structure of the 𝑙-th layer GNN.

4 Methodology
4.1 Problem Formulation
In this paper, we explore the integration of LLM consultation into
GNN training for the node classification task. We follow the trans-
ductive setting of node classification: Given some labeled nodes
VL ⊂ V in graph G = (V,A, {𝑠𝑛}𝑛∈V ), we aim to classify the
remaining unlabeled nodesVU = V\VL within the same graph.
Formally, the target is to learn a set of GNN parametersW to predict
the unlabeled nodes with the guidance from LLMs:

𝑓W |LLM : (A, {sn}n∈V ) → Y. (3)

Note that the ground truth labels of nodes, the pseudo labels
predicted by GNNs, and the pseudo labels from LLMs are denoted as
Y, Ŷ, Ŷ𝐿 ∈ {0, 1}𝑁×𝐶 respectively, with 𝐶 as the number of classes.

4.2 Overview of LOGIN
Figure 2 demonstrates the framework of LOGIN. In this pipeline,
we first identify target nodes that need consultation with LLM
based on the GNN’s predictive uncertainty (c.f. Section 4.3). Then
prompts consisting of the associated texts and local structures of
these nodes are provided to LLMs for consultation (c.f. Section 4.4).
After LLM consultation, a complementary mechanism is applied to
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Figure 2: The pipeline of LOGIN.

fully utilize the LLMs’ responses, regardless of their classification
correctness (c.f. Section 4.5).

4.3 Node Selection Based on Uncertainty
An intuitive node selection approach is to consult the LLM with
all nodes in the graph. However, such a manner underutilizes the
capacity of GNNs, which are proficient at handling simple nodes,
and it could be inefficient due to the limited interaction speed with
LLMs. Hence, we decide to consult LLMs only with partial difficult
nodes, and adopt the variance of the predictions from several GNNs
as a surrogate indicator for identifying the hard ones in our LOGIN.

Recall that Bayesian estimation is typically used to rate the
predictive certainty in common neural networks [27]. Under the
Bayesian framework, the conventionally fixed GNN parameters W
are considered as random variables following specific distributions.
The predictive probability of the Bayesian GNN with parameters
Wb can be defined as Eq. (4).

𝑝 (Ŷ | A,X) =
∫
Wb

𝑝 (Ŷ | Wb,A,X)𝑝 (Wb | A,X)dWb (4)

Since the true posterior 𝑝 (W | A,X) in Eq. (4) is hard to cal-
culate in practice, variational inference uses an arbitrary distri-
bution 𝑞𝜃 (W) to approximate the posterior. Specifically, we use
MC dropout variational inference, in which dropout could serve
to perform variational inference. In this method, the variational
distribution 𝑞𝜃 (W) is from a Bernoulli variableM𝜃 , representing
whether the neurons are on or off, as Eq. (5) shows.

M𝜃∼ Bernoulli(𝜃 ),
𝑞𝜃 (W) = 𝑝 (W | 𝜃 ) = 𝑝 (W𝜃 ),

W𝜃 = M𝜃 ⊙W𝑏 .

(5)

where 𝜃 is the dropout rate, and M𝜃 represents a binary mask
that controls which neurons in GNNs are off. Then, {Ŵ𝑡 }𝑇𝑡=1 is
a collection of 𝑇 samples drawn from W𝜃 in a Monte Carlo way.
Through the minimization of the loss function defined in Eq. (6)
using these weight samples, W𝑏 can be acquired.

L(W𝑏 ) = −
1
𝑇

𝑇∑︁
𝑡=1

Y log
(
𝑓Ŵ𝑡
(A,X)

)
+ 1 − 𝜃

2𝑇
∥W𝑏 ∥2 (6)

After W𝑏 is trained, the model uncertainty score U, which is an
𝑁 -dimension vector indicating the uncertainty score of each node,
is calculated as in Eq. (7).

𝑈 (Ŷ | A,X) = Var(Ŷ | A,X) ≈ 1
𝑇

𝑇∑︁
𝑡=1

(
𝑌𝑡 −

1
𝑇

𝑇∑︁
𝑡=1

𝑌𝑡

)2
(7)

4.4 LLM Consultation
After we identify the nodes with the most uncertainty V𝑢𝑐 for
LLM consultation, the next step in LOGIN is to figure out how to
convert the semantic and topological information of these nodes
into an understandable format by LLMs. We consult LLMs in a
zero-shot node-by-node manner, i.e., constructing a single prompt
for each uncertain node, without classification examples provided.
Each node prompt is composed of three elements: instruction, input
data, and output indicator. The Prompt Construction module in
Fig. 2 shows a general prompt example, and we provide the detailed
prompts in Appendix A.

Instruction. The instruction explains the node classification
task in the context of the graph type, depicting real-world meanings
of nodes and edges, with a spectrum of the categories provided.

Input Data. The input data includes information related to the
target node 𝑛, namely its original text 𝑠𝑛 , the two-hop neighbor-
hood N2 (𝑛) description, and the neighbor labels YN2 (n) , ŶN2 (n)
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from both human annotations and GNN predictions. Instead of
listing edges to express connectivity [11, 17] , we opt to summarize
one-hop and two-hop neighbors for the sake of semantic clarity
and easier parsing. Note that we only select uncertain nodes from
the train set, otherwise, it might bring a data leakage. The target
node’s labels 𝑦𝑛, 𝑦𝑛 are also included in its corresponding prompt
to provide more information for LLM predictions.

Output Indicator. The output indicator is used to control the
output format of LLMs for further analysis, specifically by offering
a desired response example in JSON format. Regarding the response
content, we aim for the output to include the most probable classi-
fication outcome 𝑦𝐿𝑛 along with its explanation 𝑒𝑛 .

4.5 LLM Response Feedback
After consulting LLMs with all selected uncertain nodesV𝑢𝑐 , we
have a group of LLM predicted pseudo labels and corresponding
explanations

{
𝑛 ∈ V𝑢𝑐 : (𝑦𝐿𝑛 , 𝑒𝑛)

}
. Next, we aim to maximize the

utility of LLM responses and convert the information into signals
suitable for GNN processing. The LLM responses can be divided
into two types compared to ground truth labels, i.e., the correct pre-
dictions where 𝑦𝐿𝑛 = 𝑦𝑛 and the wrong predictions where 𝑦𝐿𝑛 ≠ 𝑦𝑛 .
We not only utilize the correct predictions but also the misclassifi-
cations, and offer distinct approaches respectively. Incorporating
such a complementary coping mechanism endows GNN training
with full exploitation of LLM responses.

For clarity in expression, we denote the correct nodes and incor-
rect nodes asV𝑟 andV𝑤 respectively, satisfyingV𝑟 ∪V𝑤 = V𝑢𝑐
andV𝑟 ∩V𝑤 = ∅.

When LLM is Right. For a right node 𝑛 ∈ V𝑟 , we append the
explanation 𝑒𝑛 parsed from the LLM response to its original text 𝑠𝑛 .
And we attain its new node embedding xn′ by encoding the new
attached text from 𝑒𝑛 :{

x′n
}
𝑛∈V𝑟

← ENC
(
{𝑠𝑛 + 𝑒𝑛}𝑛∈V𝑟

) (8)

When LLM is Wrong. For those wrong nodes, the LLM re-
sponses are left out since the explanations for incorrect classifica-
tions could be unhelpful. Instead, we opt to attribute the misclas-
sification to the topological information, e.g., complex structure
patterns and potential noises. Therefore, we heuristically simplify
the local structure for the wrong nodes to make it easier for GNNs
to learn. Specifically, around a wrong node 𝑛 ∈ V𝑤 , we prune
edges based on node similarity scores to denoise the local structure.
As in representative graph structure learning methods, e.g. GNN-
Guard [63], we measure similarity 𝑑𝑛𝑖 between the features of the
wrong node 𝑛 and its neighbor 𝑖 using cosine similarity:

𝑑𝑛𝑖 = 𝑑𝑐𝑜𝑠 (𝒙𝑛, 𝒙𝑖 ) = (𝒙𝑛 ⊙ 𝒙𝑖 ) /(∥𝒙𝑛 ∥2 ∥𝒙𝑖 ∥2) . (9)

Then, edges of node 𝑛 are pruned if their similarity scores fall
below a user-defined threshold 𝑑𝑡ℎ . By pruning edges of the mis-
classified nodesV𝑤 as in Eq. (10), we accomplished the topological
refinement leveraging the wrong answers from LLMs.

A′ ← 1(D − 𝑑𝑡ℎ · I) ⊙M𝑤 ⊙ A (10)

Here D =
(
𝑑𝑖 𝑗

)
N×N denotes the similarity matrix, with M𝑤 as a

binary node mask representingV𝑤 , and 1 is a binary indicator.
In a nutshell, the response feedback stage is divided into two

complementary scenarios. When the LLM classifies nodes correctly,

we upgrade the original node embeddings with the encoded ex-
planations. Conversely, we impute the misclassifications to the
topological noise, hence pruning edges around the wrong nodes.

4.6 Train and Test
After the LLM response feedback stage, LOGIN is set to retrain
GNN. When retraining, the GNN aggregates the original node
features and those updated with the correct classification grounds.
And for nodes misclassified by LLMs, aggregation only happens
along the retained edges after structure refinement. In this way, the
message passing of GNNs is integrated with LLM intelligence both
semantically and topologically.

Figure 2 shows the GNN training process with one-time con-
sultation within the LOGIN framework. Note that this process can
be iteratively repeated until the maximum number of iterations is
reached or the GNN performance has achieved an acceptable level.

During testing, ground truth labels are inaccessible, so we use
the trained GNN without additional LLM consultation for final pre-
dictions. Retraining the GNN on LLM-augmented graphs, with en-
hanced node representations and refined edges, allows it to perform
aggregation in a more reliable neighborhood with more accurate
semantic information and thus produce improvements.

5 Evaluation
In this section, we investigate the effectiveness of our LOGIN frame-
work on both homophilic and heterophilic graph datasets, to address
the following research questions:
• RQ1: Does the LOGIN framework achieve performance compa-
rable to state-of-the-art GNNs?
• RQ2: How does the complementary coping mechanism for LLMs’
responses contribute to the LOGIN framework?
• RQ3: How does LOGIN operate over specific nodes based on
responses from LLMs?
• RQ4: How does LLMs-as-Consultants paradigm perform com-
pared with LLMs-as-Predictors and LLMs-as-Enhancers?
• RQ5: Can consulting more advanced LLMs, consulting with
more nodes, or applying more advanced GNNs in LOGIN un-
lock greater potential?

5.1 Experimental Setup
Datasets. We conducted extensive experiments on six datasets:
three homophilic graphs and three heterophilic graphs, to demon-
strate the versatility and applicability of our proposed LOGIN
framework in handling graphs with distinct characteristics. For
homophilic graphs, we collected the Cora [39] and PubMed [46]
datasets from widely used TAG benchmarks, while Arxiv-23 [22]
was recently introduced to eliminate the data leakage unfairness
when evaluating the impact of LLMs on graph learning.

For heterophilic graphs, we transformed the commonly-used
web-page-link graphs: Wisconsin, Texas, and Cornell [12] into
TAGs by sourcing and incorporating the raw texts1, which were
not available previously in graph libraries. Besides, we fine-tuned
DeBERTa-base [21] to encode raw texts into node embeddings. The
basic statistics of the datasets are displayed in Appendix B.

1http://www.cs.cmu.edu/~webkb/
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Table 1: Performance comparison for node classification on homophilic and heterophilic graphs. The best results and the second
best results among the classic GNNs with and without LOGIN and the advanced models are bold and underlined respectively.

Method Cora PubMed Arxiv-23 Wisconsin Texas Cornell

Classic
GNNs

MLP

OR 0.6438 ± 0.0331 0.8805 ± 0.0032 0.6759 ± 0.0027 0.8113 ± 0.0718 0.8105 ± 0.0730 0.7538 ± 0.0669
FT 0.6897 ± 0.0102 0.9486 ± 0.0030 0.7789 ± 0.0023 0.8415 ± 0.0391 0.8211 ± 0.0681 0.8049 ± 0.0602
LO 0.7063 ± 0.0201 0.9505 ± 0.0036 0.7902 ± 0.0034 0.8528 ± 0.0588 0.8895 ± 0.0820 0.8051 ± 0.0618

GCN

OR 0.8630 ± 0.0219 0.8635 ± 0.0083 0.6707 ± 0.0040 0.3736 ± 0.0672 0.4579 ± 0.0711 0.4308 ± 0.0664
FT 0.8683 ± 0.0191 0.9289 ± 0.0069 0.7624 ± 0.0051 0.4415 ± 0.1152 0.5526 ± 0.0832 0.5282 ± 0.0644
LO 0.8694 ± 0.0177 0.9396 ± 0.0030 0.7703 ± 0.0020 0.5057 ± 0.0430 0.5789 ± 0.0588 0.5231 ± 0.0292

GraphSAGE

OR 0.8720 ± 0.0216 0.8849 ± 0.0026 0.6864 ± 0.0011 0.6113 ± 0.0662 0.5053 ± 0.0776 0.6051 ± 0.0389
FT 0.8592 ± 0.0363 0.9472 ± 0.0026 0.7881 ± 0.0019 0.7211 ± 0.1324 0.7579 ± 0.1123 0.7179 ± 0.1189
LO 0.8727 ± 0.0219 0.9511 ± 0.0036 0.7941 ± 0.0029 0.7434 ± 0.0930 0.7737 ± 0.1311 0.6872 ± 0.0896

MixHop

OR 0.8601 ± 0.0281 0.8969 ± 0.0038 0.6774 ± 0.0029 0.5736 ± 0.1183 0.5526 ± 0.1500 0.4974 ± 0.0803
FT 0.8572 ± 0.0123 0.9493 ± 0.0030 0.7775 ± 0.0036 0.7092 ± 0.1035 0.7421 ± 0.1075 0.6718 ± 0.1397
LO 0.8624 ± 0.0253 0.9513 ± 0.0038 0.7818 ± 0.0040 0.7094 ± 0.0738 0.8158 ± 0.0930 0.7179 ± 0.0314

Advanced
GNNs

JK-Net 0.8579 ± 0.0001 0.8841 ± 0.0001 0.7532 ± 0.0012 0.7431 ± 0.0041 0.6649 ± 0.0046 0.6459 ± 0.0075
H2GCN 0.8692 ± 0.0002 0.8940 ± 0.0001 0.7382 ± 0.0011 0.8667 ± 0.0022 0.8486 ± 0.0044 0.8216 ± 0.0023
APPNP 0.8539 ± 0.0477 0.9355 ± 0.0060 0.7969 ± 0.0143 0.6830 ± 0.0470 0.7368 ± 0.0832 0.6410 ± 0.0480
GCNII 0.8833 ± 0.0027 0.7925 ± 0.0043 0.7847 ± 0.0068 0.7020 ± 0.0037 0.7135 ± 0.0039 0.7405 ± 0.0060
SGC 0.8509 ± 0.0648 0.8832 ± 0.0055 0.7740 ± 0.0160 0.5321 ± 0.0506 0.5526 ± 0.0811 0.4615 ± 0.0748
SSP 0.8616 ± 0.0289 0.9178 ± 0.0116 0.7976± 0.0185 0.6302 ± 0.0850 0.7000 ± 0.0758 0.6923 ± 0.0314

Compared Methods. We choose classic GNNs as backbones
equipped with LOGIN, namely GCN [28], GraphSAGE [18] andMix-
Hop [1], to compare with the advanced state-of-the-art GNNs, in-
cluding JK-Net [58], H2GCN [69], APPNP [16], GCNII [10], SGC [57]
, and SSP [25], to demonstrate that the former can achieve perfor-
mance on par with the latter. MLP, which predicts without adja-
cency information, also serves as a base learner combined with
LOGIN to show the potential of our framework. We select Vicuna-
v1.5-7b as our LLM consultant, an open-source LLM trained by
fine-tuning Llama 2 on user-shared conversations.

For the backbones, “OR” refers to the backbone model trained
on original shallow node features, “FT” uses node embeddings from
the fine-tuned LM, and “LO” denotes the model trained with our
LOGIN framework. Besides, in the ablation study, we refer to the
feature update and structure refinement operations in the LLM
response feedback stage as “F” and “S”, respectively.

In addition to advanced GNNs, we also compared LOGIN as
an implementation of LLMs-as-Consultants paradigm, with the
other existing paradigms, i.e. LLMs-as-Predictors and LLMs-as-
Enhancers, respectively.

Implementations. We adopt accuracy on the test set to evalu-
ate the node prediction performance. We report the mean accuracy
and standard error from five runs with varied random data splits,
and all the reported results are statistically significant.

For hyper-parameters, in the uncertainty measure module, we
implement Monte Carlo dropout variational inference by running
models 𝑇 times with different neurons off, where 𝑇 represents the
number of weight samples in MC dropout.𝑇 is always set to 5 in our
experiments. For the ratio𝛾 of uncertain nodes to consult, we adjust
𝛾 slightly on each dataset around the proportion of heterophilic
nodes shown in Table ??. In the response feedback stage, we tune
the similarity threshold 𝑑𝑡ℎ between [0.1, 0.2], according to the
off-shell tool GNNGuard [63].

5.2 Performance Comparison (RQ1)
To answer RQ1, we evaluate our proposed LOGIN framework on
three homophilic and three heterophilic datasets, respectively. Ta-
ble 1 reports the prediction accuracy scores and standard errors,
and we have the following observations.

Comparison with Vanilla Baselines. Firstly, our method con-
sistently outperforms the vanilla baselines trained with the original
node features or the LM-finetuned node embeddings in most cases.
There are only two exceptions in the Cornell dataset. Since Cornell
is a relatively small dataset with only 39 nodes in the test set, as
indicated by the standard errors, the experimental randomness is
quite high with this small dataset. Nevertheless, LOGIN still helps
improve the performance of MixHop on Cornell by 4.6% with a low
deviation. Apart from this exception, all listed fundamental base-
lines trained within our LOGIN framework exceed the vanilla ones
in node classification accuracy on the other five datasets, demon-
strating the effectiveness of integrating LLMs as consultants into
the GNN training process.

Comparison with Advanced GNNs. Secondly, we are able
to attain performance comparable to that of advanced GNNs by
training fundamental models within the LOGIN framework. It is
noteworthy that on PubMed and Texas, respectively known as
benchmarks for homophilic and heterophilic graphs, we achieve
the highest prediction accuracy among all the compared methods.
This finding verifies the generalizability of our method on graphs
with distinctive characteristics. For Cora, Arxiv-23, Wisconsin, and
Cornell, LOGIN achieve remarkable performance on par with the
SOTA GNNs such as H2GCN and SSP as well.

Comparison with the Simplest Model. Thirdly, it draws our
attention to the fact that regardless of the feature type and training
paradigm we apply, MLP reveals great potential in the node clas-
sification task on heterophilic graphs. We believe that the TAGs
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Figure 3: Ablation studies of LOGIN on PubMed and Texas.

with considerably high heterophily may be better regarded as natu-
ral language data rather than graph-structured data, for the links
contained in these datasets seem only to carry noticeably limited
information. Additionally, our LOGIN can clearly enhance MLP, in-
spiring further research on how to leverage simple existing tools to
achieve superb capability with the help of the LLM-as-Consultants
paradigm.

5.3 Ablation Study (RQ2)
To answer RQ2, we subdivide the response feedback stage into
feature update and structure refinement. We remove eachmodule to
demonstrate their contribution to our complementary mechanism
for utilizing LLM responses.

We present the results of ablation studies exclusively on the
PubMed and Texas datasets, where LOGIN has demonstrated supe-
rior performance, as depicted in Fig. 3. Across both datasets, the
complete LOGIN pipeline consistently achieves the highest per-
formance, thus affirming the effectiveness and necessity of our
complementary design for processing LLMs’ responses.

Feature Update. Regarding the feature update component, we
observe that it enhances prediction accuracy more effectively for a
homophilic graph. Specifically, in the case of Cora, we notice from
Fig. 3 (a) that LOGIN without feature update results in a notable
decrease in performance on certain occasions compared to the
whole pipeline.

Structure Refinement. Regarding the structure refinement
component, LOGIN without edge pruning exhibits a significant
performance decrease compared to the models with the complete
coping mechanism, as shown in Fig. 3 (b). This observation aligns
with our intuition, as in heterophilic graphs, the principal challenge
for conventional GNNs in achieving generalization stems from the
distinctiveness of their structural characteristics.

By removing each component separately, we verify that regard-
less of the graph type, in this case, the extent of heterophily, our
design of the fault-tolerant complementary analysis strategy for
LLMs’ responses is sound and necessary.

5.4 Case Study (RQ3)
To answer RQ3, we select two individual nodes, respectively from
Cora and Wisconsin, as concrete examples to illustrate how LOGIN
operates on them. These two nodes are initially recognized as un-
certain nodes and misclassified by a pre-trained GNN. Through
interaction with an LLM, the operation of feature enhancement or
structure refinement is correspondingly conducted, thereby in turn
helping the GNN make the right prediction.

356

Title: A Flexible Model For 
Human Circadian Rhythms 
Abstract: Many hormones 
and other physiological 
processes vary in a 
circadian pattern. …

LLM response
{”classification result“: ”Neural_Networks”, 
"explanation": "The paper describes a 
semi-parametric periodic spline function 
that can be fit to circadian rhythms. This 
type of model is commonly used in Neural 
Networks to model complex patterns. 
Therefore, the paper is likely to belong to 
the Neural Networks subcategory."}

Probabilistic 
Method

Neural
Networks

GNN Prediction

356

GNN Prediction

356356

Feature Update

LLM Consultation

✓

✓

Figure 4: Case study of node 356 in Cora, where the LLM
consultation classified right and performed feature update.

Web page content:
CS564 Lecture 2 Home 
Page 
Welcome to the home page 
for CS564-2. This page is 
(obviously) under 
construction; …

LLM response
{"classification result": "student", 
"explanation": "The webpage is a course 
page with information about the CS564-2 
lecture. It is likely that the webpage belongs 
to the 'student' category."}

GNN Prediction

Edge Pruning

LLM Consultation

×

62

GNN Prediction

✓
62

62

62

Student

Course

Faculty

Figure 5: Case study of node 62 in Wisconsin, where the LLM
consultation misclassified and pruned edges.

From a Citation Graph: Cora.We present node 356 from Cora
as a representative example, whose ground truth label is Neural
Networks. Unlike other papers, the title and abstract of this paper
do not feature its label as a term explicitly, which also poses chal-
lenges for human classification. Besides, node 356 only has two
one-hop neighbors, one of which is labeled differently as Proba-
bilistic Method. This discrepancy may lead to failure in GNNs when
processing this node. Nevertheless, thanks to the comprehensive
understanding of the paper content facilitated by the parametric
knowledge of LLMs, accurate prediction and a concise rationale are
generated. Consequently, the subsequent semantic enhancement
of node features significantly contributes to the final prediction of
the GNN. The consultation process is elaborated in Fig. 4.

From a Web-page-link Graph: Wisconsin. Node 62 from
Wisconsin represents a course web page, with content that is clear
enough for humans to identify as a course homepage. However, due
to its misleading neighborhood, where all nodes except itself in its
2-hop ego-graph do not represent course, among which 3 out of 4
are web pages of students, pre-trained GNNs cannot directly classify
node 62 accurately. Moreover, the LLM consultant also provides
the incorrect classification with an illogical rationale as in Fig. 5.
This leads to edge pruning around node 62, which contributes to
structure denoising that aids the re-trained GNN in making the
right choice.

The studies of two interesting cases we encountered in experi-
ments highlight the solidity and efficacy of LOGIN when handling
various scenarios, which are consistent with our motivation of
designing an LLM-fault-utilized strategy for feedback.
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Table 2: Performance comparison among LLMs-as-Predictors, LLMs-as-Enhancers and LLMs-as-Consultants paradigms.

Dataset Method LLMs-as-Predictors LLMs-as-Enhancers LLMs-as-Consultants
(vicuna-v1.5-7b) (TAPE + llama2-13b-chat) (LOGIN + vicuna-v1.5-7b)

Cora
MLP

0.7432 ± 0.0131
0.7675 ± 0.0187 0.7343 ± 0.0841

GCN 0.8630 ± 0.0101 0.8759 ± 0.0151
GraphSAGE 0.8625 ± 0.0093 0.8699 ± 0.0167

PubMed
MLP

0.7847 ± 0.0632
0.9475 ± 0.0046 0.9508 ± 0.0040

GCN 0.9257 ± 0.0063 0.9401 ± 0.0043
GraphSAGE 0.9464 ± 0.0033 0.9505 ± 0.0031

Arxiv-23
MLP

0.7547 ± 0.0927
0.7905 ± 0.0041 0.7909 ± 0.0064

GCN 0.7751 ± 0.0029 0.7734 ± 0.0028
GraphSAGE 0.7935 ± 0.0029 0.7961 ± 0.0029

5.5 Comparison among LLM-based
Paradigms (RQ4)

To answer RQ4, we investigate the LLMs-as-Predictors, LLMs-
as-Enhancers, and our LLM-as-Consultants paradigms by testing
typical methods derived from each. For LLMs-as-Predictors, we
prompt vicuna-v1.5-7b [67] to get direct predictions. For LLMs-as-
Enhancers, we adopt TAPE [22] equipped with llama2-13b-chat[51].

Note that the accuracy scores in Table 2 differ from those in Ta-
ble 1, since we take the results of TAPE + llama2-13b-chat from their
paper, which are reported for four runs. In Table 2, we also present
results for the same four data splits to ensure a fair comparison.

As Table 2 shows, the LLMs-as-Consultants paradigm consis-
tently outperforms the LLMs-as-Predictors paradigm across all
datasets. Additionally, compared to the LLMs-as-Enhancers par-
adigm, our method surpasses the TAPE method equipped with
llama2-13b-chat with only one exception, despite it employs an
open-source LLM with significantly more parameters and prompts
it with all nodes rather than a small subset selected. Our LLMs-
as-Consultants paradigm demonstrates greater compatibility with
lower time and resource consumption. Comparisons with additional
baselines from various LLMs-for-Graphs paradigms are provided
in Appendix C.

5.6 Extensive Study (RQ5)
To answer RQ5, we conduct extended studies incorporating more
advanced LLMs, consulting a larger number of nodes, and utilizing
more advanced GNN backbones respectively.

Consulting more advanced LLMs. We consulted more ad-
vanced LLMs: vicuna-v1.5-13b [67] and GPT 3.5-turbo-0125 [7].
Due to the constraints related to computational resources and Ope-
nAI API calling, we provide results solely for Cora, based on two
runs as presented in Table 3.

In this experiment, all fundamental baselines with GPT 3.5-turbo-
0125 outperform the ones with open-source LLMs. Additionally,
the implementation of LOGIN with vicuna-v1.5-13b demonstrates a
modest enhancement in predictive accuracy compared with vicuna-
v1.5-7b, which has fewer parameters. The trend in predictive accu-
racy indicates that employing more advanced LLMs within LOGIN
framework indeed facilitates performance increase. This under-
scores the significant potential of the LLMs-as-Consultants para-
digm when equipped with more powerful LLMs.

Table 3: Performance comparison among LOGIN with differ-
ent LLMs on Cora.

LLMs MLP GCN GraphSAGE

Vicuna-v1.5-7b 0.7063 ± 0.0331 0.8694 ± 0.0102 0.8727 ± 0.0201
Vicuna-v1.5-13b 0.7202 ± 0.0201 0.8702 ± 0.0191 0.8739 ± 0.0135

GPT 3.5-turbo-0125 0.8123 ± 0.0254 0.8992 ± 0.0099 0.8856 ± 0.0102

Consulting with more nodes & More advanced GNN back-
bones.We further explore the effects of consulting withmore nodes
and employing more advanced GNN architectures. The details are
provided in Appendix E. Empirical studies reveal that: (i) increasing
the number of nodes in the LLM consultation by 10% leads to a
notable improvement in performance; and (ii) LOGIN effectively
enhances the performance of more advanced GNNs, such as APPNP
and GCNII, extending its benefits beyond classic GNNs.

Through the above experiments, we demonstrate that incorpo-
rating more advanced LLMs, consulting a larger number of nodes,
and utilizing more advanced GNN backbones can each enhance
the LOGIN framework. This finding highlights the practicality and
potential of the LLMs-as-Consultants paradigm.

6 Conclusion
In this work, we propose a new paradigm of leveraging LLMs for
graph tasks, coined “LLMs-as-Consultants”. Following this para-
digm, our LOGIN framework empowers interactive LLM consulta-
tion in the GNN training process. We identify uncertain nodes in
the GNN pre-training stage, prompt LLMs with rich semantic and
topological information compression, and parse LLMs’ responses
in a not only fault-tolerant but also fault-utilized way to enhance
GNN re-training. Extensive experiments on both homophilic and
heterophilic graphs illustrate the validity and versatility of our
proposed LLMs-as-Consultants paradigm.
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