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ABSTRACT
Game bots are automated programs that assist cheating users and
enable them to obtain huge superiority, leading to an imbalance in
the game ecosystem and the collapse of user interest. Therefore,
game bot detection becomes particularly important and urgent.
Among many kinds of online games, massively multiplayer on-
line role playing games (MMORPGs), such as World of Warcraft
and AION, provide immersive gaming experience and attract many
loyal fans. At the same time, however, game bots in MMORPGs
have proliferated in volume and method, evolving with the real-
world detection methods and showing strong diversity, leaving
MMORPG bot detection efforts extremely difficult. To deal with the
fast-changing nature of game bots, we here proposed a generalized
game bot detection framework for MMORPGs termed NGUARD,
denoting NetEase Games’ Guard. NGUARD takes charge of auto-
matically differentiating game bots from humans for MMORPGs. In
detail, NGUARD exploits a combination of supervised and unsuper-
vised methods. Supervised models are utilized to detect game bots
in observed patterns according to the training data. Meanwhile,
unsupervised solutions are employed to detect clustered game bots
and help discovering new bots. The game bot detection frame-
work NGUARD has been implemented and deployed in multiple
MMORPG productions in the NetEase Game portfolio, achieving re-
markable performance improvement and acceleration compared to
traditional methods. Moreover, the framework reveals outstanding
robustness for game bots in mutated patterns and even in com-
pletely new patterns on account of the design of the auto-iteration
mechanism.

∗Equal contributions.
†NGUARD: NetEase Games’ Guard, which is committed to detecting game bots and
preserving the amusement order.
‡NetEase Fuxi AI Lab: named after Fu Xi, the legendary Creator in China, and estab-
lished to enlighten games with artificial intelligence.
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1 INTRODUCTION
As the popularity of online games increases, game players have a
greater demand for getting a richer online game experience and
a high-quality game entertainment. Since items and currency ac-
quired virtually in games can be sold to other players for real profit
in actual currency, illegal activities in online games have sharply
increased and become more diverse [16, 28]. Many online game
security providers have been victims of these actors. Thus, security
has become an important issue in the online game market [11, 27].
Typically, MMORPGs are online games in which thousands of play-
ers use characters with specific roles to interact with each other
and performs adventure-related tasks in the same continuous and
persistent world [9]. MMORPGs are considered to be a profitable
business by game bot developers. Hence, one major problem occurs:
game bots that come along with almost every MMORPG.

Essentially, game bots are automated programs that reach the
system kernel and perform continuously tough or tedious tasks
without requiring the rest periods that human players require. Game
bots use illegal methods to help users to obtain game advantages,
e.g., accumulating more experience points, money or other items
than human players. Figure 1 (b) shows an example of a game bot
client, through which users can open multiple MMORPG clients
simultaneously and leave the bot program to play the games itself,
just as Figure 1 (a) indicates. Accordingly, game bot consumers
can easily achieve great superiority over honest users, leading to
the huge imbalance in the in-game ecosystem [17, 27]. The game
industry has suffered serious threats from game bots, and game
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Figure 1: In-game screenshots of the game bot implemented

bots detection remains one of the most urgent problems that game
publishers need to address.

Game bots are quite diversified, varying with different game
conditions and spreading throughout the game universe. Labor- and
time-consuming, immature operational technological means prove
inadequate to handle the task of detecting these bots. Traditional
machine-learning-based methods [1, 3, 14, 15, 23, 25] mainly exploit
handcraft features and cannot integrally represent players’ behavior
in games, resulting in a general lack of performance. Meanwhile,
these methods are depend greatly on labeled data and take a lot of
time to iterate when a new type of game bot comes forward.

To address this problem, we propose a generalized game bot
detection framework for MMORPGs: NGUARD, which represents
natural player behavior and has excellent extensibility. NGUARD
employs a combination of supervised and unsupervised methods
for game bot detection, where supervised methods discriminate
between bots and humans according to labeled data and unsuper-
vised methods to detect clustered game bots and help discover new
bots. Over the past years, NGUARD has been implemented and
deployed in NetEase MMORPGs and received very positive reviews.
The major contributions can be summarized as follows:

• We develop a generalized game bot detection framework for
MMORPGs: NGUARD. We have created this detection frame-
work by integrating supervised and unsupervised method,
which produces accurate estimates. To achieve better and
more effective performance, we also propose two different
algorithms to initialize the models.

• We evaluate empirically on a very wide real-world dataset
collected from NetEase MMORPGs. Through this we achieve

remarkable performance improvements compared to tradi-
tional methods. Moreover, the framework performs outstand-
ing robustness to game bots in mutated patterns and even
in completely new patterns on account of the design of the
auto-iteration mechanism.

• NGUARDdeveloped for real game industry application achieves
remarkable reviews in NetEase MMORPGs and can be ex-
tended to other areas of online games.

2 PRELIMINARIES
2.1 NetEase MMORPGs
Living up to the company’s motto of "good games have no borders",
NetEase Games has made great popularity and traction in domestic
and overseas markets. In 2016, revenues of NetEase’s online gaming
segment reached $4 billion, up 61.6% year over year. NetEase Games
continues to maintain high growth rate and deliver new hit games.
To commit to the pursuit of the highest quality games and player
experience, NetEase Games has developed and published dozens of
popular games especially MMORPGs on pc and mobile, including
Fantasy Westward Journey Online, New Westward Journey Online
II, Ghost II, Tianxia 3, Fantasy Westward Journey Mobile, Ghost
Mobile, New Westward Journey Mobile etc.

2.2 Game bots in NetEase MMORPGs
As one of China’s largest MMORPG developer companies, NetEase
Games has built up numerous game operation teams to deal with
evolving game bots. Despite the great efforts that the game op-
eration teams have made, MMORPG bot detection still remains a
challenging task. Game bots in different NetEase MMORPGs have
undermined fairness and playability in the game world and show
similarity due to the consistent design of the game systems and
gameplay methods. In order to work out a general framework for
MMORPG bot detection, we went into the existing game bots and
found out the three different types of quests that game bots aim to
take on (see Figure 1(c)).

Main quests. The main quest usually consists of a series of main
tasks that players need to pass through in order to unlock some
other side quests. Human players normally complete all the main
tasks and are always immersed in the game story before they can
see the game endings. However, game bots can easily complete all
the main tasks just to harvest game money after creating account.
When game bots reach a specific level, they will transfer their
accumulated money and churn .

Daily quests. The daily quest is a series of repetitive tasks that
players can attend on a daily basis. The rewards for the daily quest
are usually very limited due to their low difficulty and repetitiveness.
However, those daily tasks will normally reward players with some
collectibles that can be used to exchange for some other items. The
goal for the daily quest is to stimulate players’ incentive to login
everyday, which in turn will increase the game’s life span. In daily
quests, game bots complete the daily tasks automatically and gain
experience and daily money shortly after logging in.

Instanced quests. The instanced quest is a series of indepen-
dent scenes in which a specific copy ("instance") is created for each
individual party attempting to enter. As such, the game requires a
small time period to create the quest, and it can only be used until
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a certain time limit before it is destroyed. Therefore, each party
has the quest to themselves. Each player in the party has to know
how to cooperate with others in order to finish the quest. Due to
the high rewards of game experience and items, this type of quest
is favored by many players. In instanced quests, game bots can
kill monsters and collect money automatically after entering the
instance.

3 DATASET DESCRIPTION
Our dataset is collected from a real-world MMORPG in NetEase,
involving about 436 billion user logs from May 1st, 2016 to Dec
31st, 2017 which amount to 107TB. Among these users, 2.6 million
players are game bots in main quests, 1.1 million players are game
bots in daily quests and 0.2 million players are game bots in in-
stanced quests. The game bots are identified and labeled by NetEase
Games’ operation teams. Considering users privacy, the players in
our dataset are ensured by anonymizing all personal identifiable
information.

Each user log is composed of game events ordered by time stamp,
which represents each player’s behavioral sequence. And each game
event contains four features as followed:

EventID: The event ID conducted by a game player, which de-
scribes the current event in detail. For example, a player uses a
certain skill, obtains a certain item.

Interval: The time that has passed between the last and the
current game event.

Count: The count of times that a certain game event happened
during the current sampling time window, e.g., a player uses a
certain game skill 10 times, then Count will be recorded as 10.

Level: The current game level for the player. The lowest level of
each player is 1.

Bot

Bot

Human

Human

(a) Main quests

Bot

Bot

Human

Human

(b) Daily quests

Bot

Bot

Human

Human

(c) Instanced quests

Figure 2: Behavior sequence of game bots is similar to each
other, while behavior sequence of human players shows di-
versity

Figure 2 visualizes the players’ behavioral sequence(i.e., sequence
of EventID) for three types of quests, which gives us a general
idea of how a game bot’s behavior sequence differs from a human
player. Each slot represents a game event, and different game events
are assigned different colors to differentiate them. As we can see
from the figure, the behavior sequences of game bots exhibit a
very different pattern compared to human ones. Human players’
behavior sequences are more complicated and unpredictable than
the game bots, which allow our models to correctly classify the
players (as humans or bots).

(a) Main quest (b) Daily quest (c) Instanced quest

Figure 3: Relationship between features and their relative
occurence frequency

To further illustrate, the relationship between features including
Interval (in logs), Count (in logs) and Level of a certain EventID
and their relative occurrence frequency (in logs) can imply im-
portant information for bot detection. As can be seen from the
Figure 3, the features for humans and game bots demonstrate very
different values. Due to limited space, we do not show the descrip-
tive statistics related to all EventIDs, but these IDs do lead to the
same considerations. In Figure Interval-Frequency, we find that the
interval-frequency curve of game bots appears to be inclined to the
left side of the chart, that is, the frequency of game bots is larger
than that of human players where the Interval is relatively small,
while the game bots is less frequency than that of human players
where the Interval is relatively large. This can be easily explained
by the fact that game bots are automatic programs, and that they
only take a small time interval to finish a certain event. Similarly,
in Figure Count-Frequency, we find that the count-frequency curve
of game bots appears to be inclined to right side, that is, the fre-
quency of game bots is larger than that of human players where
the Count is relatively large, while the game bots is less frequency
than that of human players where the Count is relatively small.
Because game bots are not as flexible as human players, game bots
need to consume more skills or items to finish a certain task. In Fig-
ure Level-Frequency, we find that the level peaks of game bots are
different between different quests. In main quests, game bots creep
up on some certain levels, because game bots always transfer game
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money when they have reached these certain levels. In daily quests
and instanced quests, game bots are always crowed in a relatively
low level range. The reason is that the goals of most game bots are
earning game money, as the level goes up, the game quests become
increasingly difficult. It is hard for game bots in high levels to make
a profit. In conclusion, the above three features: Interval, Level and
Count, will produce a good estimates for game bot detection.

4 FRAMEWORK
Our proposedMMORPGbot detection framework, termedNGUARD,
is shown in Figure 4. NGUARD consists of a preprocessing mod-
ule, an offline training module, an online inference module and an
auto-iteration mechanism module. The cycle among offline training
module, online inference module and auto-iteration module repeats
itself on a periodic basis. The preprocessing module segments and
samples the raw sequence(i.e., user log) to get high-quality sequence.
The offline training module is responsible for training the models
offline. The online inference module provides online service to bot
detection. The auto-iteration mechanism module collects online
data in every cycle phase to reconstruct the training set and perform
short-term and long-term auto-iterations.
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Figure 4: NGUARD: a MMORPG bot detection framework

In this section, we elaborate the above four major modules. The
proposed supervised and unsupervised methods used in offline
training module and online inference module are given.

4.1 PREPROCESSING
This section provides a flexibleway to construct high-quality datasets
on raw data by two steps: segmentation and sampling.

4.1.1 Segmentation. Due to the diversity of three types of quests,
it is not possible to design and implement a one-size-fits-all seg-
mentation method. To be compatible, the segmentation module
is designed to be extensible, which includes three segmentation
methods for each quest as follows.

For main quests, we segment each player’s behavior sequence
by Level. Since the main quest is designed to accompany the player
throughout his game life cycle, in other words, the player’s level
will increase as the game goes on.

For daily quests, we segment each player’s behavior sequence
by date. Since daily quests repeat on a daily basis, a one-day se-
quence is enough to reflect the essential information.

For instanced quests, we take only the sequence fragment
between on-instance action (enter scene) and off-instance action
(leave scene) since this period contains most of the information in
instanced quests.

4.1.2 Sampling. Different sampling policies are developed to
obtain high-quality samples from the human and game bots dataset.

For data of human players,we describe our sampling method
as follows. Let n be the desired number of sub-groups. Let P =
{p1,p2, . . . ,pn } be a segmentation set containing n sub-groups. Let
the level range be [lstar t , lend ]. pk represents the kth sub-group
interval:

pk =(⌊lstar t + (k − 1) lend − lstar t
n

+ 0.5⌋,

⌊lstar t + k
lend − lstar t

n
+ 0.5⌋]

(1)

where k = 1, 2, . . . ,n, and ⌊·⌋ denotes round down, (·] denotes left
closed right open interval. Then, for each sub-group we will sample
approximately the same amount of data points. Hence, the sampled
data contains diversified information from every level.

For data of game bots,we sample the data according to the den-
sity of the original set. First, we cluster the original data of game
bots using SA-DBSCAN (Sequence Autoencoder and DBSCAN),
which will be introduced in section § 4.3. Then, we will perform
different sampling policies according to density for each cluster ob-
tained. We considerably reduce the sampling frequency for clusters
with a high density of data distribution and increase the sampling
frequency for clusters with a low density of data distribution.

4.2 Offline Training
In this subsection, we introduce three phases of the offline training
module: the pre-training phase, themodeling phase and the transfer-
learning phase.

In the pre-training phase, we train Time-interval Event2vec
to get the pre-trained embedding matrix of EventID. Then, We use
pre-trained embedding matrix from the well-trained Time-interval
Event2vec as the initial weights of the embedding layer for Se-
quence Autoencoder. Finally, we extract the fine-tuned pre-trained
embedding matrix and rnn cell matrix from the well-trained Se-
quence Autoencoder as the initial weights of following classifier.

In the modeling phase, we propose a binary classifier SA-
ABLSTM (Sequence Autoencoder and Attention-based Bidirectional
LSTM) to distinguish bots from human players. We conduct unsu-
pervised pre-training followed by supervised fine-tuning, i.e., the
embedding layer and rnn cell of ABLSTM are initialized by the
parameters provided by pre-trained Sequence Autoencoder. We
also design an extra features layer concat to the attention layer to
maximize the value of extracted features from behavioral sequences.
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In the transfer learning phase, we perform transfer-learning
by reusuing a pre-trained SequenceAutoencoder for a given (source)
game quest on another (target) one.

The proposed models Time-interval Event2vec, Sequence Au-
toencoder, SA-ABLSTM and TL-ABLSTM will be introduced as
follows.

 

Figure 5: SA-ABLSTM architecture

4.2.1 Time-interval event2vec. Inspired by the work of app2vec
by Qiang Ma [19], we propose a model with similar approach called
Time-interval Event2vec to deal with event vectorization. In the
work of app2vec, the goal is to design a modified word2vec model
which considers the weight between apps, where weight is mea-
sured by the time elapsed between two app sections. Similar to
app2vec, our work of Time-interval Event2vec also considers the
time elapsed between two events. Intuitively, the event within
shorter time gaps to the target event should contribute more in
predicting the target event.

We define the weight of each event ei to target event et to be:

w(ei , et ) = α l (2)

where α is chosen as 0.8 according to [19], and l is the amount of
the time gap (e.g., number of seconds in our case) between event ei
within the current sequence and target event et .

Inserting the weight into CBOW model, then the weighted aver-
age of event vector v can be defined as:

v =

∑
−c≤j≤c, j,0w(ej , et )vj∑
−c≤j≤c, j,0w(ej , et )

(3)

where c is the context window, vj is the vector representation of
jth event.

In our framework, we use the Time-interval Event2vec as a pre-
training step to learn a vector representation for each EventID, and
use thematrix of ids as the initial parameters of the word embedding
matrix of the Sequence Autoencoder as mentioned below.

4.2.2 Sequence Autoencoder. Our approach to Sequence Autoen-
coder is inspired by the work in semi-supervised sequence learning
by Andrew M.Dai [8], which has been successfully used in many
classification tasks. Key to this approach is to use seq2seq by Ilya
Sutskever [24] as a pre-training step and then use its parameters as
a starting point for other supervised training models.

A significant property of the Sequence Autoencoder is that it
can be trained with large quantities of unlabeled data to improve
its quality, which is especially useful for tasks that have limited
labeled data [8].

We use the Sequence Autoencoder as an unsupervised learning
model. The objective of the model is to reconstruct its own input
sequence, and as such we can use the output of the encoder as the
compressed vector representation of the input sequence. More con-
cretely, we use a one-layer bidirectional RNN with LSTM cell in the
encoder, and another in the decoder. Moreover, the word embedding
matrix weights in Sequence Autoencoder are initialized by the pre-
trained Time-interval Event2vec. We will fine tune the embedding
layer during the training phase of Sequence Autoencoder.

4.2.3 SA-ABLSTM. We pose the problem of identifying game
bots as a binary classification problem. The model combining Se-
quenceAutoencoder andAttention-based Bidirectional LSTM, namely
SA-ABLSTM is proposed, i.e., the word embedding matrix weights
and LSTM cell weights of the encoder of the Sequence Autoen-
coder are utilized as initialization weights in corresponding layers
of ABLSTM. The structure of SA-ABLSTM is shown in Figure 5.
The classification model ABLSTM is illustrated as follows.

Each user activity is assigned to an EventID, and one record of
a user’s continuous behavior sequence is represented as an Even-
tID sequence {E1, . . . ,En }. The model receives this sequence as
input, followed by an embedding layer which transforms the input
sequence to a sequence of vectors {e1, . . . , en }. We then feed the
sequence {e1, . . . , en } to a bidirectional lstm layer, which can better
preserve the global information of the sequence. The bidirectional
lstm layer outputs its hidden state vectors H = {h1, . . . ,hn }.

Additionally, we employ the information from the three extra fea-
tures aforementioned: Interval, Count and Level. Differently from
the EventIDs in the sequence, there is no temporal relations between
the Interval (or Count, Level) values of the two events which ap-
pear in chronological order. Therefore, we apply knowledge-based
methods to make use of these supplementary features:

• Based on our knowledge of game events, the occurrence of a
certain event is a Poisson process. Thus the Interval of each
type of event for a human and for a bot fits a gamma distri-
bution respectively, i.e. Intervalh ∼ Γ (αh , βh ), Intervalb ∼
Γ (αb , βb ). The corresponding probability density function
is

f (x ; α , β) = βαxα−1e−βx

Γ (α) (4)

For the ith event in a sequence, we compute two probabili-
ties:

Ii,h = f
(
ti ; αi,h , βi,h

)
, Ii,b = f

(
ti ; αi,b , βi,b

)
(5)

These two probabilities help to efficiently differentiate hu-
mans and bots.

• Similarly, we can get another two probabilities from the
information of Count :

Ci,h = f
(
ci ; αc,h , βc,h

)
, Ci,b = f

(
ci ; αc,b , βc,b

)
(6)
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• In terms of the feature of Level , no typical distribution can
be observed in general because of the game design. There-
fore, we take the conditional probability that indicates the
likelihood of bots at this given event ei and Level li .

Li = P (li ) =
N l,e
bot

N l,e
bot + N

l,e
human

(7)

• In the end, we introduce a bias which describes the occur-
rence probability of game bots for this kind of event.

Bi = P (ei ) =
N e
bot

N e
bot + N

e
human

(8)

We obtain the extended feature vectors H ′ = [h′1, . . . ,h
′
n ]T by

concatenating the hidden vectors with the statistical values:

h′i = hi ◦ Ii,h ◦ Ii,b ◦Ci,h ◦Ci,b ◦ Li ◦ Bi (9)

Self-attention mechanism [26] is introduced to generate a se-
quence representation which places different importance contribu-
tion on the extended feature vectors:

ai = so f tmax(wi
TH ′ + bi ) , ri = ai ⊙ h′i (10)

where ri is the representation vector at ith time step after self-
attention, computed by element-wisemultiplyingh′i with theweight
vectorai . The representation of thewhole sequenceR = [r1, . . . , rn ]
is connected to a single neuron with sigmoid activation function to
get a classification probability.

4.2.4 TL-ABLSTM. In this subsection, we will discuss the pos-
sibility of generalizing our models to different game quests, i.e.,
transfer learning.

Transfer learning aims to adapt knowledge between the related
source and target domains [21]. Previous studies have proved the
transferability of different tasks, and the transferring results outper-
form the random weights on different datasets of computer vision
and natural language processing[2, 7, 20].

In our paper, we conduct Transfer Learning by reusing a Se-
quence Autoencoder for a given (source) game quest on another
(target) one. For example, after we have pre-trained the Sequence
Autoencoder of daily quest, what we can do is to use the param-
eters from the Sequence Autoencoder of the daily quests as the
initial parameters for the training classification model ABLSTM of
main quest. This solution skips the process of training Sequence
Autoencoder of main quest, and it might not have the same per-
formance as SA-ABLSTM of the main quests. However, compared
to ABLSTM, TL-ABLSTM accelerates the training phase and has a
better performance.

4.3 Online Inference
In the online inference module, we provide a supervised solution
and an unsupervised solution to detect game bots.

4.3.1 Classification: SA-ABLSTM. In the supervised solution,
the well-trained ABLSTM model from the offline training phase is
deployed to detect game bots. When given an unknown user record,
the model provides a probability as a reference to the operation
team. The team decides whether to suspend the players after com-
paring the classification probability with a preset threshold, which

is usually chosen according to operation experience by the team. A
higher threshold leads to a higher precision, while a lower one to a
higher recall.

4.3.2 Clustering: SA-DBSCAN. In the unsupervised solution, we
propose a model combining Sequence Autoencoder and DBSCAN,
namely SA-DBSCAN. DBSCAN is a data density-based clustering
algorithm proposed by Martin Ester [10]. In our solution, we first
extract the vector representation of EventID sequences from the
well-trained Sequence Autoencoder. Next, perform DBSCAN on
the vector representation of EventID sequence. Clusters of player
groups with high behavioral similarity can be obtained by DBSCAN.
Since human players holds the majority in online data, we can
easily locate the clusters of human players. And the small clusters
surrounding the clusters of human players are different types of
game bots. The operation team takes action to deal with these
potential game bots.

4.4 Auto-iteration Mechanism
The increasing online service and rapid renewal of game bots make
a model outdated soon after the deployment. An auto-iteration
mechanism is introduced in our framework to help in iterative
modeling while minimizing human workload. The major steps of
the auto-iteration mechanism are identified in this section.

4.4.1 Humanset Resampling. We pull down new records of hu-
man players from online servers and re-sample them with the sam-
pling method proposed in section 4.1.2. Intuitively, our humanset
resampling work helps our models adapt to real-time behavioral
changes, since the game services and the playing methods are con-
tinuously changing as time goes by.

4.4.2 New Botset Detection. The clusters of game bots can be
easily located through SA-DBSCAN. We distribute the game bots
into three categories: known game bots that exist in training data;
mutated game bots that derive from known bots but with varied
features; unknown game bots that are not yet been detected.

For every cluster of game bots, we use ABLSTMmodel to predict
the probability whether each data point is a game bot. Thus, an
output probability distribution for the cluster is obtained, which
can help us understand which category of game bots this cluster
belongs to. Among the clusters of game bots, the ones with the
high prediction probabilities are the known game bots, the ones
with the middle probabilities are mutated bots, and the ones with
the low probabilities are unknown bots.

The mutated bots and unknown bots are hard to be detected by
ABLSTM method, but easy to be located by clustering. We label
these game bots and feed them into the process of iterating models,
which is vital for our models to learn the changes in the online
environment.

4.4.3 Short-term Auto-iteration. The training dataset is recon-
structed based on the online data of human players, mutated game
bots and unknown game bots extracted from humanset resampling
and new botset detection.

We replace the original negative dataset (human players records)
with the dataset from the humanset resampling phase, and merge
the original positive dataset (game bots data) with the new dataset
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Table 1: Performance comparison of supervised methods

Main quest Daily quest Instanced quest
Model Precision Recall F1 Model Precision Recall F1 Model Precision Recall F1
MLP 0.9618 0.9773 0.9694 MLP 0.9528 0.9609 0.9568 MLP 0.9441 0.9571 0.9506
CNN 0.9721 0.9807 0.9764 CNN 0.9633 0.9712 0.9672 CNN 0.9552 0.9643 0.9597

Bi-LSTM 0.9809 0.9865 0.9837 Bi-LSTM 0.9709 0.9728 0.9718 Bi-LSTM 0.9612 0.9732 0.9672
ABLSTM 0.9851 0.9882 0.9866 ABLSTM 0.9716 0.9774 0.9745 ABLSTM 0.9674 0.9786 0.9730

TL-ABLSTMim 0.9878 0.9896 0.9887 TL-ABLSTMid 0.9736 0.9721 0.9728 TL-ABLSTMdi 0.9698 0.9801 0.9749
TL-ABLSTMdm 0.9893 0.9906 0.9899 TL-ABLSTMmd 0.9771 0.9742 0.9756 TL-ABLSTMmi 0.9704 0.9808 0.9756
SA-ABLSTM 0.9904 0.9912 0.9908 SA-ABLSTM 0.9838 0.9861 0.9815 SA-ABLSTM 0.9721 0.9816 0.9768
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Figure 6: Convergence speed comparison of ABLSTM and its extensions
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Figure 7: t-SNE visualization of clustering result of SA-DBSCAN

from the new botset detection phase. The reconstructed training
dataset enables our models to detect all types of game bots.

Short-term auto-iteration is performed on ABLSTM part. Since
the training time of ABLSTM is relatively short, we update the
ABLSTM model based on our reconstructed training dataset in the
short-term cycles.

4.4.4 Long-term Auto-iteration. Long-term auto-iteration is per-
formed on SA-ABLSTM. Since the training time of Time-interval
word2vec and the Sequence Autoencoder is relatively long, we
update these models based on the whole online dataset in the long-
term cycles to reduce computation overheads. The updating process

of the ABLSTM is the same as the short-term auto-iteration based
on the reconstructed training dataset.

5 EVALUATION
In this section, we evaluate our game bot detection framework
NGUARDon a real-world dataset collected from aNetEaseMMORPG.
We balance our dataset using under-sampling. Three sets of experi-
mental studies are conducted:

(1) comparison of supervised methods’ performance;
(2) evaluation of unsupervised approach SA-DBSCAN;
(3) verification of the necessity for the auto-iteration mechanism.
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5.1 EXPERIMENTAL RESULTS
5.1.1 Comparisons of supervised solutions. We compare the per-

formance of SA-ABLSTM, TL-ABLSTM, ABLSTM and three other
models: (1) MLP model with 2 fully-connected layers, whose input
is the frequencies of EventIDs; (2) CNN model with 1 convolution
layers, followed by average pooling and 1 fully-connected layer;
(3) Bi-LSTM model with 1 layer of Bi-LSTM, following by 1 fully-
connected layer. Note that CNN and Bi-LSTM share the same input,
i.e., the sequence of EventID concatenated with Interval, Count and
Level.

Performance: The experiment results are shown in Table 1, with
Precision, Recall and F1 as evaluation metrics: The ABLSTM model
outperforms theMLP, CNN and Bi-LSTMmodels, while TL-ABLSTM1

improves over ABLSTM a lot, and overall, SA-ABLSTM yields the
best results.

Convergence speed: To further illustrate the convergence speed
comparison of ABLSTM and its extensions, we plot the objective
versus the number of epochs in Figure 6. The SA-ABLSTM model
starts with the best initial parameters and converges fastest to
the lowest loss value, which proves the advantage of pre-training
steps. Also, comparing to the ABLSTMmodel, the two TL-ABLSTM
models start with better initial parameters and converge faster to
lower loss value, which demonstrates the feasibility of transfer
learning.

5.1.2 Evaluations of unsupervised solution: SA-DBSCAN. We
evaluate the effectiveness of our unsupervised clustering method
SA-DBSCAN in bot detection. Figure 7 depicts the clustering result
of SA-DBSCAN in 2-d t-SNE embedding plots. The clusters are
assigned different colors to differentiate them. This visualization
helps us quickly understand the similarity between players. We
can find out the small-scale clusters from the result, which are
game bots to a large extent. Game bots in a certain cluster are more
similar to each other than to those in other clusters. The detection
accuracy of each cluster of game bots is marked in the figure, which
shows a good estimate of bots.

(a) Cluster "10": Human (b) Cluster "1": Bot (c) Cluster "6": Bot

(d) Cluster "3": Bot (e) Cluster "5": Bot (f) Cluster "4": Bot
Figure 8: Clusters’ probability distribution in Figure 7(a)

5.1.3 The necessity of the auto-iteration mechanism. The neces-
sity is estimated from two aspects.

Firstly, we evaluate the ability of our unsupervised approach
SA-DBSCAN to accurately detect mutated and new game bots. The
1TL-ABSLTMab means ’a’ quest transfers to ’b ’ quest, where ’m’ is an abbreviation
of main quest, ’d’ is an abbreviation of daily quest, ’i’ is an abbreviation of instanced
quest.

(a) Main quests (b) Daily quests (c) Instanced quests
Figure 9: Performance with the auto-iteration mechanism

clusters shown in Figure 7(a) are labeled as ground truth by the op-
eration teams. According to the prediction probability distribution
of each cluster shown in Figure 8, we can determine which type
of game bots the cluster belongs to. Cluster "10" is the largest clus-
ter with low probabilities, which is considered as human players.
Small-scale clusters surrounding cluster "10" are all game bots. For
example, cluster "6" with low probabilities is evaluated as unknown
game bots, while cluster "5" with high probabilities as known game
bots. Cluster "1", "3" and "5" with middle probabilities are evaluated
as mutated game bots. The evaluation result remarkably coincides
with our solution.

Secondly, we evaluate the performance of our framework with
the auto-iteration mechanisms, as shown in Figure 9. In a real
MMORPG production, we set the short-term cycle as 1 month and
the long-term cycle as 3 months. Of all the quests, we observe the
same results that the performance of our framework with auto-
iteration mechanism merely decreases slightly during a short-term
cycle and almost remains unchanged thanks to long-term cycle.
Whereas, the performance of our framework without the auto-
iteration mechanisms decreases rapidly over time.

6 RELATEDWORK
In this section, we give a brief review of existing methods used to
detect game bots.

The studies for game bot detection can be classified into three cat-
egories: client-side, network-side and server-side. Client-side game
bot detection is signature-based, i.e., it monitors anomalies of the
client machine and sends screen captures of the client to the game
server. Yampolskiy et al. [29] proposed a protection mechanism for
online games. Golle et al. [12] presented a special hardware device
embedded CAPTCHA tests. However, game bots can easily detour
this detection with disguise. In addition, client-side bot detection
causes collisions in the operating system, which brings inconve-
nience to users. For these reasons, client-side game bot detection is
not currently preferred.

Network-side detection detects different reactions of game bots
and human players when there is a change in network traffic or
network packets. Chen et al. [4] studied the traffic difference be-
tween official clients and standalone bot programs. Hilaire et al.
[13] found that bots exhibit frequent packet arrivals patterns and
send less information than human players. However, performing
network-side bot detection can cause network overload and a lag
in game time, a significant annoyance for the game experience.
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Considering the drawbacks of client-side and server-side game
bot detection methods, server-side game bot detection is the most
needed detection method for game companies. This method takes
game players’ log data collected from game server and apply data
mining techniques [6], since game bots display repeated and biased
behavioral patterns differing from human players. Hence, server-
side game bot detection does not cause any side-effects and facili-
tates game companies without deploying additional programs. In
this paper, we adopt server-side game bot detection based on the
game players’ log, which produce high accuracy and efficiency by
pre-defined detection algorithms.

Many works about game bot detection have proven the impor-
tance of sequence data for the behavioral analysis. Ahmad et al. [1]
analyzed and calculated features from activity sequence to iden-
tify gold farmer. Platzer et al. [22] proposed a detection method
using combat sequence produce by avatars. Chen et al. [5] is based
on avatars movement trajectories sequence. Lee et al. [18] imple-
mented the full action sequence of players on big data platform.
Although these approaches considered the time-series information
of sequence data, they only focus on feature dimension extracted
from the sequence rather than actual time dimension. In our work,
we directly model both feature dimension and time dimension,
which can learn richer information from the sequence data. More-
over, our work also considers the temporal distance information
between events. The temporal distance conveys information essen-
tial for bot detection, e.g., the time interval of game bot between
two events is rather small.

Some other works employed supervised data mining methods
to analyze user behaviors. Kim [15] used Decision Tree to detect
bots by analyzing the window events. Kang [14] proposed multi-
models such as Naive Bayes, Logistic Regression, Random Forest
and Decision Tree to detect bots based on several unique and dis-
criminative behavioral characteristics. Prasetya [23] examined ANN
to detect game bots based on a similar pattern of bots. Bernardi
[3] used MLP to detect bots based on playing behavior distribu-
tions. Although these works gained high accuracy on the training
set, they cannot detect game bots in mutated patterns, not to men-
tion completely new patterns as the online environment changes.
Our paper solves this problem through unsupervised method and
auto-iteration mechanism.

To the best of our knowledge, this is the first work that pro-
vides a generalized game bot detection framework for time series
classification by integrating supervised and unsupervised models.

7 CONCLUSIONS
Game bots accumulate cyber assets and level up in a fast man-
ner without sufficient effort, which has a severe adverse effect on
human players. In this paper, we propose a generalized game bot
detection framework for NetEase MMORPGs termed NGUARD.
Considering the different behavioral patterns between human play-
ers and game bots, we employ a combination of supervised and
unsupervised methods to detect game bots based on user behavior
sequences. We apply an auto-iteration mechanism to automatically
adapt to the mutated and new game bots. Extensive experiments
have been performed on a real-world MMORPG dataset, which

yield a significant performance gain comparing to traditional meth-
ods. What’s more, NGUARD has been implemented and deployed
in multiple MMORPG productions in NetEase Games and received
very positive reviews.

Our promising future work is to deploy NGUARD in First Per-
son Shooter (FPS) and Multiplayer Online Battle Arena (MOBA)
productions in NetEase Games.
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