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Game bots are automated programs that assist cheating users, leading to an imbalance in the game ecosystem

and the collapse of user interest. Online games provide immersive gaming experience and attract many loyal

fans. However, game bots have proliferated in volume and method, evolving with the real-world detection

methods and showing strong diversity, leaving game bot detection efforts extremely difficult. Existing game

bot detection techniques mostly rely on handcrafted features or time-series based features instead of fully

utilizing player behavior sequences. In this regard, a more reasonable way should be learning user patterns

from player behavior sequences when facing the fast-changing nature of game bots. Here we propose a gen-

eral game bot detection framework for massively multiplayer online role playing games termed NGUARD+

(denoting NetEase Games’ Guard), which captures user patterns in order to identify game bots from player

behavior sequences. NGUARD+ mainly employs attention-based methods to automatically differentiate game

bots from humans. We provide a combination of supervised and unsupervised methods for game bot detec-

tion to detect game bots and new type of game bots even when the labels of game bots are limited. Specif-

ically, we propose the following two variants for attention-based sequence modeling: Attention based Bidi-

rectional Long Short-Term Memory Networks (ABLSTM) and Hierarchical Self-Attention Network (HSAN)

as our supervised models. ABLSTM is keen on inducing certain inductive biases which makes learning more

reasonable as well as capturing local dependency and global information, while HSAN could handle much

longer behavior sequences with less memory and higher computational efficiency. Experiments conducted

on a real-world dataset show that NGUARD+ can achieve remarkable performance improvement compared

to traditional methods. Moreover, NGUARD+ can reveal outstanding robustness for game bots in mutated

patterns and even in completely unseen patterns.
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1 INTRODUCTION

As the popularity of online games increases, game players have a greater demand for getting a
richer online game experience and a high-quality game entertainment. Since items and currency
acquired virtually in games can be sold to other players for real profit in actual currency, illegal
activities in online games have sharply increased and become more diverse [24, 43]. Many online
game providers have been victims of game bots.1 Estimation by BattlEye2 showed that there were
over 1,044,000 PUBG3 bots banned in January, 2018, which may exceed 1 year sales of many games.
In addition, PUBG bots directly caused average active users declining by almost 2.7% by the end of
February 9, 2018. Among many kinds of games, game bots come along with almost every Massively
Multi-player Online Role Playing Game (MMORPG).4 Figure 1(a) shows an example of a game bot
client, through which users can open multiple MMORPG clients simultaneously and leave the bot
program to play the games automatically. Accordingly, game bot consumers can easily achieve
great superiority over hones and well-behaved users [26, 39, 42]. Thus, game bot detection is one
of the most urgent concerns that game publishers need to address.

The most common way to deal with the problem is to adopt machine learning-based methods,
which heavily rely on hand-crafted features or time-series-based features. These methods extract
delicate features such as player information [1], social interaction diversity [19, 21], action fre-
quency [4, 32], trace diversity [6], and the like. However, several challenges still remain. First,
constructing features is labor-intensive and time-consuming. Moreover, we cannot perform direct
optimization on the original user behavior sequences. The second challenge is how to deal with
long sequence data; that is, to capture the local and global dependency with less memory and time
cost. Third, the labels of game bots are expensive to collect while large amount of unlabeled data
are easier and cheaper to be available, so how to train our model with limited labeled data or even
without labeled data is a challenge. Fourth, another difficult problem is that concept drift may be
present on real-world game bot detection where the patterns of game bots will change over time.
This kind of mutated game bots will make the predictions lack robustness.

To deal with the first challenges, we develop a new paradigm for refining game bot detection
through the analysis of user behavior sequences in order to discover the different patterns be-
tween humans and bots. There are three primitive observations for identifying abnormal patterns
through user behavior sequences. We explain these by taking an example of MMORPGs in Netease
Games5 in Figure 1(b), where the behavior sequence of a human and the behavior sequence of a
bot are given. First, we can observe that the time interval between behaviors in the bot’s sequence
is much smaller than the human’s. This indicates the following common property of bots: they do
not need to take much time to response. Second, we find that the bot always conducts “Fly”, “Fire”,

1Automated programs that reach the system kernel and perform continuously tough or tedious tasks without requiring

the rest periods.
2An anti-cheat company, which provides anti-cheat system for PUBG.
3PlayerUnknown’s Battlegrounds, an online multiplayer battle royale game.
4Online games in which thousands of players use characters with specific roles to interact with each other and performs

adventure-related tasks in the same continuous and persistent world.
5A company for game productions,
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Fig. 1. In-game screenshots of the game bot implemented.

“Sit” in a cycle mode, which reveals a certain rhythm in its behavior sequence. Third, the behaviors
of human are more diversified, e.g., human players tend to check the “map” (game scene) when
they first enter the game environment. Moreover, human players tend to prefer social activities
such as “chat” during a game. These aforementioned observations show the significance of ex-
ploiting behavior sequences, which can fully utilize the user behavior sequences to model human
or bot patterns in a more general and direct way.

When it comes to the second challenge, capturing the context dependency within sequential
data is crucial for sequence modeling [13]. Recurrent neural networks [11, 20, 33, 41], convolu-
tional neural networks [25], and attention mechanism [3, 28, 40] have been widely applied to deal
with context dependency. Here, we propose two variants of attention-based sequence modeling:
Attention based Bidirectional LSTM (ABLSTM) and Hierarchical Self-attention Network (HSAN).
ABLSTM, the combination of bidirectional LSTM and attention mechanism, is keen on induc-
ing certain inductive biases which makes learning more reasonable, especially when the input
sequences are not very long. HSAN is proposed to alleviate the large memory requirement in
existing self-attention networks (i.e., the memory grows quadratically in line with the sequence
length when storing the alignment scores). To be specific, we split the input sequence into sev-
eral equal-length subsequences, which can be viewed as a hierarchical way, where the intra-level
self-attention networks (SAN) captures the local dependency within each subsequence and the
inter-level SAN captures the global dependency between subsequence. HSAN only needs to con-
duct self-attention mechanism on a short subsequence during intra-level SAN, which saves a lot
memory compared to a whole long sequence. Thus, HSAN requires less time and space cost, and
also takes the advantage of parallelizable computation and is able to capture the long and local
dependency. The ABLSTM and HSAN variant exhibit different advantages when modeling user
behavior sequences in different cases.

To deal with the third and fourth challenge, we employ a combination of supervised and unsu-
pervised methods for game bot detection, where supervised methods are applied to discriminating
bots and humans according to labeled data, and unsupervised methods are also applied to detect-
ing game bots and can further help discover new type of game bots. In addition, we develop an
auto-iteration mechanism to cope with changeable bot environment.

In this work, we propose a general game bot framework for MMORPGs, namely, NGUARD+.
Over the past years, NGUARD+ has been implemented and deployed in NetEase MMORPGs, which
avoids 50% unnecessary economic losses caused by game bots and helps improve 80% work effi-
ciency for operations teams. The major contributions can be summarized as follows:

—We explore the different patterns between humans and bots and develop a new paradigm
for game bot detection through the empirical study of user behavior sequences directly and
efficiently.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 6, Article 65. Publication date: September 2020.



65:4 J. Xu et al.

—We propose two variants for sequence modeling: an ABLSTM and a HSAN. Specially, HSAN
can be applied for modeling context dependency in sequence data, which requires less mem-
ory but inherits all the merits of SAN.

—We integrate supervised and unsupervised method to alleviate the problem of lacking la-
beled data, and further discover new bots never encountered to enhance detection robust-
ness.

—We develop a generalized game bot detection framework for MMORPGs: NGUARD+. We
evaluate empirically on a real-world dataset collected from NetEase MMORPGs, and achieve
competitive improvements compared to traditional methods. Moreover, the framework per-
forms outstanding robustness to game bots in mutated patterns and even in completely new
patterns on account of the design of the auto-iteration mechanism.

The remainder of the article is organized as follows, Section 2 reviews the related works and
Section 3 briefly describes the backgrounds of Netease MMORPGs. Section 4 introduces our dataset
and performs a deep analysis on it. Section 5 discusses our detailed framework and proposed model.
Experiments are conducted in Section 6 and Section 7 concludes the article.

2 RELATED WORK

In this section, we will describe and review some state-of-the-art of game bot detection methods,
especially from the aspects of user modeling.

The studies for game bot detection can be classified into the following three categories: client-
side, network-side and server-side. Client-side game bot detection has been put into application
in most game companies. This kind of method is signature-based which monitors abnormality of
a client machine and sends a screen capture of the client to the game server. Yampolskiy et al. [44]
proposed a protection mechanism for online games. Golle et al. [15] presented a special hardware
device embedded CAPTCHA tests. However, game bots can easily detour this detection method
with reverse engineering. In addition, client-side bot detection causes collisions in operating sys-
tem, which brings inconvenience for users. For these reasons, client-side game bot detection is not
currently preferred.

Network-side game bot detection is designed to observe network traffic or network packets.
This kind of method detects different reactions of game bots and human players when there is a
change in network conditions. Chen et al. [5] studied the traffic difference between official clients
and standalone bot programs. Hilaire et al. [17] found that bots exhibit frequent packet arrivals
patterns and send less information than human players. However, performing network-side bot
detection can cause network overload and a lag in game time, a significant annoyance for the game
experience.

Considering the drawbacks of client-side and network-side game bot detection methods, server-
side game bot detection is the most needed detection method for game companies. Server-side
game bot detection uses game players’ log data collected from game server. Game bots display
repeated and biased behavioral patterns differing from human players. This kind of method is
based on data mining techniques. First, extract the feature set from log data [7]. Then, perform
classification using the feature set. Hence, server-side game bot detection does not cause any side-
effects and facilitates game companies without deploying additional programs. In this article, we
adopt server-side game bot detection based on the game players’ log, which produce high accuracy
and efficiency by pre-defined detection algorithms.

Traditional methods on bot detection always relied on handcrafted feature design [1, 4, 21, 22,
27, 32, 32, 34]. These studies took a lot of effort during the process of feature representation, feature
exploration and feature selection. Though feature extraction can discover the most representative
information, it is inefficient and inflexible to perform.
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Sequence data have recently drawn significant attention, and learning from sequence data en-
dows the bot detection system with more potential performance. Ahmad et al. [1] analyzed player
activity sequence and some other features to discriminate gold farmers and legitimate platers.
Platzer et al. [32] proposed a detection method using combat sequences produced by avatars and
calculated the similarity between combat sequences. Chen et al. [6] is based on avatar’s movement
trajectory sequences in game and use manifold learning to distinguish the trajectories of human
players and game bots. Lee et al. [27] implemented the full action sequences of players on a big data
platform. Bernardi et al. [4] took into account the history of the players’ actions and performed
a time series classification. Although the above approaches took into account the temporal infor-
mation of sequence data, they still need to extract features from sequence data for next modeling.
In other words, the previous studies only focus on the feature dimension extracted from sequence
rather than the complete time dimension. However, the information flow from two viewpoints, i.e.,
horizontal axis of time and vertical axis of feature has been demonstrated to be very effective on
modeling users’ characteristic. Moreover, few of them allows end-to-end gradient-based training
with original user behavior sequences. Our work directly accepts the original user behavior se-
quences as inputs, considering the long-term behavior dependency and the time interval between
behavior events, which also allows us to learn in an end-to-end architecture.

Almost all the previous works employed supervised data mining methods to analyze user be-
haviors. Kim et al. [22] used Decision Tree to detect bots by analyzing the window events. Kang
et al. [21] proposed multi-models such as Naive Bayes, Logistic Regression, Random Forest, and
Decision Tree to detect bots based on several unique and discriminative behavioral characteristics.
Prasetya et al. [34] examined ANN to detect game bots based on a similar pattern of bots. Bernardi
et al. [4] used MLP neural network to detect bots based on playing behavior distributions. Lee
et al. [26] introduced the automated maintenance process to manage the detection performance.
Although these works gained high accuracy on the training set, they cannot detect game bots in
mutated patterns, not to mention completely new patterns as the online environment changes.
Our article solves this problem through unsupervised method and auto-iteration mechanism.

To the best of our knowledge, the current research is the first to provide a generalized game
bot detection framework. It is also worth to mention that our work integrates supervised and
unsupervised models based on time series classification and clustering.

Besides, there is another line of studies that is related with our model. First, attention-based
methods [3, 28, 40] have been widely applied to dealing with context dependency. Recently, SAN
is successful in multiple Natural Language Processing (NLP) tasks, which is context-aware by
applying attention to capture the dependency in input sequence. Among multiple works of SAN,
multi-head attention proposed by [40] use a seq2seq-based structure to project the input sequence
into multiple subspaces, where SAN are utilized within each subspace. [37] proposed a directional
self-attention network, which encodes temporal order information by computing the alignment
score matrix at feature level. These works all achieve the state-of-the-art performance in NLP
tasks. However, the large memory requirement in HSAN makes it hard to utilize especially when
the sequence is very long. Second, transfer learning is a useful tool to improve the performance of
target learners from one domain by transferring knowledge from a related domain [2, 31]. Here,
our framework also applies the transfer learning to improve the performance of the target quest
from a related quest.

3 PRELIMINARIES

3.1 NetEase MMORPGs

To commit to the pursuit of the highest quality games and player experience, NetEase Games
has developed and published dozens of popular games especially MMORPGs on PC and mobile,
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Fig. 2. Game bot in MMORPG.

including Fantasy Westward Journey Online, New Westward Journey Online II, Ghost II, Tianxia
3, and the like. In Netease MMORPGs, a player operates multiple characters, where the character
is an avatar with unique features such as appearance, name, level, class, and gender.

3.2 Game Bots in NetEase MMORPGs

As one of China’s largest MMORPG developer companies, NetEase Games has built up numerous
game operation teams to deal with evolving game bots. Despite the great efforts that the game
operation teams have made, MMORPG bot detection still remains a challenging task. Game bots
in different NetEase MMORPGs have undermined fairness and playability in the game world and
show similarity due to the consistent design of the game systems and gameplay methods. In order
to work out a general framework for MMORPG bot detection, we went into the existing game bots
and found out the three different types of quests that game bots aim to take on (see Figure 2).

Main quests. The main quest usually consists of a series of main tasks that players need to pass
through in order to unlock some other side quests. Human players normally complete all the main
tasks and are always immersed in the game story before they can see the game endings. However,
game bots can easily complete all the main tasks just to harvest game money after creating account.
When game bots reach a specific level, they will transfer their accumulated money and churn.

Daily quests. The daily quest is a series of repetitive tasks that players can attend on a daily
basis. The rewards for the daily quest are usually very limited due to their low difficulty and
repetitiveness. However, those daily tasks will normally reward players with some collectibles
that can be used to exchange for some other items. The goal for the daily quest is to stimulate
players’ incentive to login everyday, which in turn will increase the game’s life span. In daily
quests, game bots complete the daily tasks automatically and gain experience and daily money
shortly after logging in.

Instanced quests. The instanced quest is a series of independent scenes in which a specific copy
(“instance”) is created for each individual party attempting to enter. As such, the game requires
a small time period to create the quest, and it can only be used until a certain time limit before
it is destroyed. Therefore, each party has the quest to themselves. Each player in the party has to
know how to cooperate with others in order to finish the quest. Due to the high rewards of game
experience and items, this type of quest is favored by many players. In instanced quests, game bots
can kill monsters and collect money automatically after entering the instance.
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Fig. 3. Behavior sequences of game bots is similar to each other, while behavior sequences of human players

shows diversity.

4 DATASET DESCRIPTION

Our dataset is collected from a real-world MMORPG in NetEase, involving about 436 billion user
logs from May 1st, 2016 to Dec 31st, 2017 which amount to 107 TB. Among these users, 2.6 mil-
lion players are game bots in main quests, 1.1 million players are game bots in daily quests and
0.2 million players are game bots in instanced quests. The game bots are identified and labeled by
NetEase Games’ operation teams. Considering users privacy, the players in our dataset are ensured
by anonymizing all personal identifiable information.

Each user log is composed of game events ordered by time stamp, which represents each player’s
behavioral sequence. And each game event contains four features as followed:

—EventID: The event ID conducted by a game player, which describes the current event in
detail. For example, a player uses a certain skill, obtains a certain item.

—Interval: The time that has passed between the last and the current game event.
—Count: The count of times that a certain game event happened during the current sampling

time window, e.g., a player uses a certain game skill 10 times, then the count will be recorded
as 10.

—Level: The current game level for the player. The lowest level of each player is 1.

Figure 3 visualizes the players’ behavioral sequence (i.e., sequence of EventID) for three types
of quests, which gives us a general idea of how a game bot’s behavior sequence differs from a
human player. Each slot represents a game event, and different game events are assigned different
colors to differentiate them. As we can see from the figure, the behavior sequences of game bots
exhibit a very different behavioral signatures compared to human ones. Human players’ behavior
sequences are more complicated and unpredictable than the game bots in most cases (game bots
seldom do random actions in order to maximize profit), which allow our models to correctly classify
the players (as humans or bots).

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 6, Article 65. Publication date: September 2020.
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Fig. 4. Relationship between features and their relative occurrence frequency.

To further illustrate, the relationship between features including the interval (in logs), the count
(in logs), and the level of a certain EventID and their relative occurrence frequency (in logs) can
imply important information for bot detection. As can be seen from the Figure 4, the features for
humans and game bots demonstrate very different values. Due to limited space, we do not show
the descriptive statistics related to all EventIDs, but these IDs do lead to the same considerations.
In Figure interval-frequency, we find that the interval-frequency curve of game bots appears to be
inclined to the left side of the chart, that is, the frequency of game bots is larger than that of human
players where the interval is relatively small, while the game bots is less frequency than that of
human players where the interval is relatively large. This can be easily explained by the fact that
game bots are automatic programs, and that they only take a small time interval to finish a certain
event. Similarly, in Figure count-frequency, we find that the count-frequency curve of game bots
appears to be inclined to right side, that is, the frequency of game bots is larger than that of human
players where the count is relatively large, while the frequency of game bots is smaller than that
of human players where the count is relatively small. The reason for this is that game bots are not
as flexible as human players, so game bots need to consume more skills or items to finish a certain
task. In Figure level-frequency, we find that the level peaks of game bots are different between
different quests. In main quests, game bots creep up on some certain levels, because game bots
always transfer game money when they have reached these certain levels. In daily quests and
instanced quests, game bots are always crowed in a relatively low-level range. The reason is that
the goals of most game bots are earning game money, as the level goes up, the game quests become
increasingly difficult, so it is hard for game bots to make a profit in high levels. Thus, the above
three features: the interval, the level, and the count, will produce good estimates for game bot
detection.

5 FRAMEWORK

Our proposed MMORPG bot detection framework, NGUARD+, is shown in Figure 5. It consists
of a preprocessing module, an offline training module, an online inference module, and an auto-
iteration mechanism module. In the preprocessing module, we segment and sample the raw se-
quences (i.e., user logs) to get high-quality sequences. After training our models offline, the online
inference module provides online service to our bot detection system. Finally, we conduct short-
term and long-term auto-iterations in order to cope with changeable bot environment, where the
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Fig. 5. NGUARD+: a MMORPG bot detection framework, which contains four modules: preprocessing, of-

fline training, online inference, and model iteration.

auto-iteration mechanism can help us collect online data in every cycle phase (i.e., offline training
-> online training -> auto-iteration mechanism) and update the training set and our models.

5.1 Preprocessing

This section provides a flexible way to construct high-quality datasets based on raw data. It con-
tains two steps. First, we extract the core segmentations in player behavior sequences for each
quest, and then we design careful sampling strategies to construct the human and game bot train-
ing set.

5.1.1 Segmentation. Considering the diversity between different types of quests, it’s hard to
implement a one-size-fits-all segmentation method for all quests. Here, we design three segmen-
tation methods for each quest as follows:

Main quest segmentation: Since the main quest is the quest to be finished throughout a
player’s whole game life cycle, the player’s level will increase as main quest goes on. We therefore
segment each player behavior sequence according to player’s level.

Daily quest segmentation: The daily quest can be finished by players on a daily basis, which
can also be taken as some daily tasks to gain some rewards. We segment each player’s behavior
sequence by each day, because a one-day sequence is enough to reflect the essential information.

Instanced quest segmentation: For instanced quest, we only take the sequence between on-
instance action (enter scene) and off-instance action (leave scene) since this period contains most
of the information in this kind of quest.

5.1.2 Sampling. Different sampling strategies are developed to obtain high-quality samples for
the human and game bots set.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 6, Article 65. Publication date: September 2020.
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For data of human players, we group them into S sub-groups, then the human player set P
can be segmented into P = {p1,p2, . . . ,pS }. We define the s-th sub-group interval ps as:

ps =�
�

⎢⎢⎢⎢⎢⎣
lstart + (s − 1)

lend − lstart

S
+ 0.5

⎥⎥⎥⎥⎥⎦
,

⎢⎢⎢⎢⎢⎣
lstart + s

lend − lstart

S
+ 0.5

⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦

(1)

where s = 1, 2, . . . , S , lstart is the lowest level among all players, lend is the highest level among all
players, �·� denotes round down, and (·] denotes left closed right open interval. Since we want
to make the sampled data contain diversified information from each player’s level, we sample
approximately the same amount of data points from each sub-group.

For data of game bots, we sample the data according to the density of the original set. First, we
cluster the original data of game bots using a proposed Unsupervised-based Seq2vec and DBSCAN
(see Section 5.3.2). Then, we will perform different sampling policies according to the density for
each cluster obtained. We considerably reduce the sampling frequency for clusters with a high
density of data distribution and increase the sampling frequency for clusters with a low density of
data distribution.

5.2 Offline Training

Three phases of the offline training module (the pre-training phase, the modeling phase, and
the transfer-learning phase) will be sequentially conducted during offline training. In the pre-
training phase, we propose two models under an unsupervised fashion to utilize the huge amount
of unlabeled data. First, the time-interval Event2vec is proposed to learn the EventID embed-
ding matrix as the preliminary step. Then, the unsupervised-based Seq2vec is proposed to fur-
ther learn a fine-tuned EventID embedding matrix, given the EventID embedding matrix from
time-interval Event2vec as initial weights of its embedding layer. In the modeling phase, we pro-
pose two variants of supervised-based classifier to distinguish bots from human players, where
the embedding layer of the classifiers can be initialized by the fine-tuned EventID embedding ma-
trix as mentioned above. In the transfer learning phase, we perform transfer learning by reusuing
a pre-trained unsupervised-based Seq2vec for a given (source) game quest on another (target)
one.

In this section, we will first present two variants of supervised-based classifiers in then modeling
phase, and then we will introduce time-interval Event2vec and unsupervised-based Seq2vec used
on the pre-training phase. Finally, the transfer learning mechanism will be given.

5.2.1 Supervised-based Classifier. The supervised-based classifier is the main model in con-
ducting modeling phase, which consists of the following three parts from its bottom to top: (1)
sequence-level modeling; (2) knowledge-level modeling; and (3) prediction-level modeling. Here,
we propose two variants of supervised-based classifier: ABLSTM and HSAN, both of which imple-
ment the knowledge-level modeling but differ in the implementation of sequence-level modeling
and prediction-level modeling. Specifically, ABLSTM is keen on inducing certain inductive biases
which makes learning more reasonable; while HSAN provides a more efficient way to model the
local and long dependency in user behavior sequences with less time and space cost.

In initial steps, we first assign each user activity an EventID. Then, one record of a user’s con-
tinuous behavior sequence is represented as an EventID sequence {E1, . . . ,EN }, which will serve
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Fig. 6. HSAN architecture.

as the input of our models. Through an embedding layer, the EventID sequence will be mapped
into a sequence of latent EventID vectors {e1, e2, . . . , eN } ∈ RN×devent .

(1) Sequence-level modeling: The sequence-level modeling aims to explicitly model the local
and global dependency of activities in player’s behavior sequence. Here, we propose two variants
as follows:

Variant I: ABLSTM. Dehghani et al. [10] states that the recurrent structure is keen on inducing
certain inductive biases which can make learning process more reasonable. To this end, we propose
an ABLSTM, where LSTM which is also a kind of recurrent neural networks can better capture
the long-term dependency in sequence and attention mechanism can help us preserve some global
information which LSTM may forget after a long periods of time (attention mechanism will be
introduced in later prediction-level modeling). To be specific, we feed the sequence {e1, e2, . . . , eN }
to a bidirectional lstm layer [18, 35, 36]. The bidirectional lstm layer outputs its hidden state vectors
H = {h1,h2, . . . ,hN }.

Variant II: HSAN. Considering recurrent structure precludes parallelization and is memory
consumption, here we use self-attention architecture eschewing recurrence as an alternative vari-
ant, which can model the global dependencies from different positions of a single sequence [40].
However, the behavior sequences of players in games are always significantly long, it’s really hard
to apply a single Vanilla SAN due to its huge amount of memory requirement in accord with the se-
quence. To address this issue, we propose a novel HSAN, which is consisted of local self-attention
and global self-attention. HSAN is capable of capturing both the local dependency and the global
dependency of user behavior sequences, while the time cost and memory cost are largely saved.
Our main idea is to split the long input sequence into several length-equal sub-sequences and
every player has the same interval range in each sub-sequence. Local self-attention is conducted
in each sub-sequence and global self-attention is conducted between sub-sequences. The detailed
structure is shown in Figure 6.

Local self-attention aims to capture the local dependency of player’s behavior sequence. We split
the high-dimension input sequence into several blocks and conduct self-attention module in each
block, which significantly contributes to the improvement in computational efficiency through its
mechanism of shared parameters and capability of parallelizable computation.

We observe that players’ event sequences tend to lack of diversity and their behaviors are much
sparser when players in the low level areas, i.e., the number of players events is fewer. Event
sequences will alter obviously and become more diverse as players level up. So we split an input
event sequence of embedding vector {e1, e2, . . . , eN } into M sub-sequences Em with equal length

R according to the occurrence probability of each level p (li ), 0 ≤ i ≤ lmax , where
∑lmax

li=1
p (li ) = 1
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and lmax is the max level of all players. Each sub-sequence Emcorresponds to a level set Lm . We
keep the sum of occurrence probability p (li ) in each Lm almost equal.

∑

i ∈L1

p (li ) ≈
∑

i ∈L2

p (li ) ≈ · · · ≈
∑

i ∈LM

p (li ) (2)

{Em }m=M
m=1 = {E1,E2, . . . ,EM },M = N

R
(3)

where E1 = {e1, e2, . . . , eR }, E2 = {eR+1, eR+2, . . . , e2R }, . . . , and EM = {eN−R+1, eN−R+2, . . . , eN }
(with padding if necessary).

Multi-head self-attention [40] is applied to Em in order to accurately capture the local depen-
dency of players’ behaviors inside each block, i.e.,

Zm = MultiHead (Qm ,Km ,Vm )

= Concat
(
head1

m ,head
2
m , . . . ,head

D
m

)
W O

(4)

headd
m = attention

(
QmW

Qm

d
,KmW

Km

d
,VmW

Vm

d

)

= softmax �
�

QmW
Qm

d
(KmW

Km

d
)T

√
R

	


VmW

Vm

d

(5)

where D is the number of parallel attention layers or heads; Qm , Km , Vm are local queries matrix,
local keys matrix, and local values matrix of them-th sub-sequence respectively; the projections are

parameter matricesW
Qm

d
∈ Rdevent×R ,W Km

d
∈ Rdevent×R ,W Vm

d
∈ Rdevent×R andW O ∈ Rdevent×devent .

The purpose of global self-attention is to capture the global dependency among the whole se-
quence of players. To be specific, we concatenate the output of local SAN as the input of global SAN,
i.e., Z = Concat (Z1,Z2, . . . ,ZM ) ∈ RN×devent . Then, a global multi-head self-attention mecha-
nism is employed to learn the long-term dependency between sub-sequences.

G = MultiHead (Q,K ,V ) (6)

whereQ , K ,V are global queries matrix, global keys matrix, and global values matrix respectively.
However, models with deep layers are hard to train, and may suffer from vanishing or exploding

gradient problems. Considering these problems, here we further employ a residual connection [16]
around the input and output of global SAN, and then we can get the outputH = {h1,h2, . . . ,hN }
as:

H = UZV + G (7)

where U ∈ RN×N and V ∈ Rdevent×devent are two learnable parameter matrices.

(2) Knowledge-level modeling: The knowledge-level modeling can be considered as a kind of
multi-feature fusion. Empirically, we employ the prior information from the three extra features
aforementioned: the interval, the count, and the level, which are also useful in bot detection. Dif-
ferently from the EventIDs in the sequence, there is no temporal relations between the interval (or
the count, the level) values of the two events which appear in chronological order. Therefore, we
apply knowledge-based methods to make use of these supplementary features:

—Based on our knowledge on game events, we find that the occurrence of a certain event can
be taken as a Poisson process. Here we fit two gamma distributions for human’s interval of
each event type and bot’s respectively, i.e., Intervalh ∼ Γ (αh , βh ), Intervalb ∼ Γ (αb , βb ).
We show the corresponding probability density function below:

f (x ; α , β ) =
βαxα−1e−βx

Γ (α )
(8)
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Specifically, for the i-th event in a sequence, we will compute two probabilities:

Ii,h = f
(
ti ; αi,h , βi,h

)
, Ii,b = f

(
ti ; αi,b , βi,b

)
(9)

These two probabilities help us efficiently differentiate humans and bots.
—Similarly, we can get another two probabilities from the information of the count:

Ci,h = f
(
ci ; αc,h , βc,h

)
, Ci,b = f

(
ci ; αc,b , βc,b

)
(10)

—In terms of the player’s level, no typical distribution can be observed in general because of
the game design. Therefore, we take the conditional probability that indicates the likelihood
of bots at this given event ei and the level li :

Li = P (li ) =
N l,e

bot

N l,e
bot
+ N l,e

human

(11)

—In the end, we introduce a bias which describes the occurrence probability of game bots for
this kind of event:

Bi = P (ei ) =
N e

bot

N e
bot
+ N e

human

(12)

We obtain the extended feature vectors O = [o1, . . . ,oN ]T by concatenating the hidden vectors
with the statistical values:

oi = hi ◦ Ii,h ◦ Ii,b ◦Ci,h ◦Ci,b ◦ Li ◦ Bi (13)

(3) Prediction-level modeling: Lastly, we aim to predict whether a player is a game bot or not.
Also, different prediction-level modeling fits different variants (ABLSTM and HSAN) mentioned
above, respectively.

For ABLSTM variant, we further apply a attention mechanism [40] in conjunction with LSTM
to fully exploit the global information in player’s sequence. The insight is that LSTM may leave
out important information from the beginning especially when the input sequence become much
longer, while attention mechanism can help us model the dependencies in sequential data regard-
less of their distance in the input or output sequences [3, 23]. To be specific, it outputs a sequence
representation which places different importance contribution on the extended feature vectors:

ai = so f tmax
(
wi

TO + bi

)
, ri = ai � oi (14)

where ri is the representation vector at i-th time step after attention, computed by element-
wise multiplying oi with the weight vector ai . The representation of the whole sequence R =
[r1, . . . , rN ] is connected to a single neuron with sigmoid activation function to get a classification
probability.

For HSAN variant, we directly connect O to a single neuron with sigmoid activation function
to get a classification probability.

5.2.2 Time-interval Event2vec (Pre-training). Inspired by the work of App2vec by Qiang Ma [29],
we propose a model with similar approach called time-interval Event2vec to deal with event vec-
torization. In the work of App2vec, the goal is to design a modified Word2vec model which con-
siders the weight between apps, where weight is measured by the time elapsed between two app
sections. Similar to App2vec, our work of time-interval Event2vec also considers the time elapsed
between two events. Intuitively, if the time gap between a specific event and the target event is
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shorter, this event should contribute more in predicting the target event. To this regard, we define
the weight of each event ei to target event et as:

w (ei , et ) = α l (15)

where α is chosen as 0.8 according to [29], and l is the amount of the time gap (e.g., calculated
based on seconds in our case) between event ei within the current sequence and target event et .

Inserting the weight into CBOW model, then the weighted average of event vector v can be
defined as:

v =

∑
−c≤j≤c, j�0 w (ej , et )vj∑
−c≤j≤c, j�0 w (ej , et )

(16)

where c is the context window, vj is the vector representation of j-th event.
In our framework, we use the time-interval Event2vec as a pre-training step to learn a vector

representation for each EventID, and use the matrix of ids as the initial parameters of the word
embedding matrix of the unsupervised-based Seq2vec as mentioned below.

5.2.3 Unsupervised-based Seq2vec (Pre-training). A significant property of the unsupervised-
based Seq2vec is that it can be trained with large quantities of unlabeled data, which is especially
useful for tasks that have limited labeled data [9]. Here, we take advantage of the encoder-decoder
structure to reconstruct the own input sequence, and for this the output of encoder can be taken as
the latent vector representation of the input sequence. Here, two variants of unsupervised-based
Seq2vec models are proposed: Sequence Autoencoder corresponding to the ABLSTM and H-Trans
corresponding to HSAN, respectively.

Variant I: Sequence Autoencoder. Sequence Autoencoder can be considered as one of the
pre-training step of ABLSTM. Our approach to Sequence autoencoder is inspired by the work in
semi-supervised sequence learning by Andrew M. Dai [9], which has been successfully used in
many classification tasks. Key to this approach is to use Seq2Seq by Ilya Sutskever [38] as a pre-
training step and then use its parameters as a starting point for other supervised training models.

More concretely, we use a one-layer bidirectional recurrent neural network (RNN) with LSTM
cell in the encoder, and another in the decoder. Moreover, the word embedding matrix weights
in Sequence Autoencoder are initialized by the pre-trained time-interval Event2vec. We will fine
tune the embedding layer during the training phase of Sequence Autoencoder.

Variant II: H-Trans. Here, we propose a novel H-Trans (Hierarchical Transformer) model
which can be considered as one of the pre-training steps of HSAN. Our approach to H-Trans is
inspired by the popular Transformer structure [9]. Instead of using the RNN or convolutional neu-
ral network, H-Trans computes position wised attention score directly by several fully-connected
networks. We apply a local-attention mechanism with shared parameters which is same to the
part of HSAN in encoder, and another in decoder.

In our work, we pre-train all players’ event embedding vector by H-Trans, and we take its en-
coder’s parameters as the initial weights of HSAN’s encoder for fine-tuning.

5.2.4 Transfer Learning. In this subsection, we will discuss the possibility of generalizing our
models to different game quests, i.e., transfer learning.

Transfer learning aims to adapt knowledge between the related source and target domains [31].
Previous studies have proved the transferability of different tasks, and the transferring results
outperform the random weights on different datasets of computer vision and natural language
processing [2, 8, 30].

In our article, we conduct transfer learning by reusing a unsupervised-based Seq2vec model for
a given (source) game quest on another (target) one. For example, after we have pre-trained the
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unsupervised-based Seq2vec model of daily quest, what we can do is to reuse the parameters from
it of the daily quests as the initial parameters for the supervised-based classifier of main quest.
This solution skips the process of training the unsupervised-based Seq2vec model of main quest,
which can still get ideal performance but largely accelerates the pre-training phase.

5.3 Online Inference

In the online inference module, we provide a supervised solution and an unsupervised solution to
detect game bots.

5.3.1 Classification Solution. In the supervised solution, the well-trained supervised-based
classifier from the offline training phase is deployed to detect game bots. When given an un-
known user record, the model provides a probability as a reference to the operation team. The
team decides whether to suspend the players after comparing the classification probability with a
preset threshold, which is usually chosen according to operation experience by the team. A higher
threshold leads to a higher precision, while a lower one to a higher recall.

5.3.2 Clustering Solution. In the unsupervised solution, here we propose a model combining
unsupervised-based Seq2vec and DBSCAN. DBSCAN is a data density-based clustering algorithm
proposed by Martin Ester [12]. In our solution, we first extract the vector representation of EventID
sequences from the well-trained unsupervised-based Seq2vec model. Next, DBSCAN is performed
on the vector representation of EventID sequence. Clusters of player groups with high behavioral
similarity can be obtained by DBSCAN. Since human players holds the majority in online data, we
can easily locate the clusters of human players. And the small clusters surrounding the clusters
of human players are different types of game bots. The operation team takes action to deal with
these potential game bots.

5.4 Auto-iteration Mechanism

The increasing online service and rapid renewal of game bots make a model outdated soon after
the deployment. An auto-iteration mechanism is introduced in our framework to help in iterative
modeling while minimizing human workload. The major steps of the auto-iteration mechanism
are identified in this section.

5.4.1 Humanset Resampling. We pull down new records of human players from online servers
and re-sample them with the sampling method proposed in Section 5.1.2. Intuitively, our humanset
resampling work helps our models adapt to real-time behavioral changes, since the game services
and the playing methods are continuously changing as time goes by.

5.4.2 New Botset Detection. The clusters of game bots can be easily located through the Unsu-
pervised Seq2vec and DBSCAN. We distribute the game bots into three categories: known game
bots that exist in training data; mutated game bots that derive from known bots but with varied
features; unknown game bots that are not yet been detected.

For every cluster of game bots, we use supervised-based classifier to predict the probability
whether each data point is a game bot. Thus, an output probability distribution for the cluster
is obtained, which can help us understand which category of game bots this cluster belongs to.
Among the clusters of game bots, the ones with the high prediction probabilities are the known
game bots, the ones with the middle probabilities are mutated bots, and the ones with the low
probabilities are unknown bots.

The mutated bots and unknown bots are hard to be detected by the supervised-based classifier,
but easy to be located by clustering. We label these game bots and feed them into the process of
iterating models, which is vital for our models to learn the changes in the online environment.
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5.4.3 Short-term Auto-iteration. The training dataset is reconstructed based on the online data
of human players, mutated game bots, and unknown game bots extracted from humanset resam-
pling and new botset detection.

We replace the original negative dataset (human players records) with the dataset from the
humanset resampling phase, and merge the original positive dataset (game bots data) with the
new dataset from the new botset detection phase. The reconstructed training dataset enables our
models to detect all types of game bots.

Short-term auto-iteration is performed on supervised-based classifier. Since the training time
of supervised-based classifier is relatively short, we update the supervised-based classifier model
based on our reconstructed training dataset in the short-term cycles.

5.4.4 Long-term Auto-iteration. Long-term auto-iteration is performed on offline training stage.
Since the training time of time-interval Event2vec and the Unsupervied-based Seq2vec is relatively
long, we update these models based on the whole online dataset in the long-term cycles to reduce
computation overheads. The updating process of the supervised-based classifier is the same as the
short-term auto-iteration based on the reconstructed training dataset.

6 EVALUATION

6.1 Experimental Setup

In this section, we evaluate our game bot detection framework NGUARD on a real-world dataset
collected from a NetEase MMORPG. The dataset details can be found in Section 4. We use under-
sampling to keep our dataset balanced.

For a fair comparison, we (i) fix the embedding size of EventID to 128 according to the best-
performed SA-ABLSTM and HSAN, and (ii) fix the length of players’ behavior sequences N to
1k (padding when sequence length is less than 1k, truncation when sequence length is greater
than 1k). The vocabulary size of EventID is limited to 13k. A dropout rate of 0.5 is used for all
embedding layers, convolutional layers, LSTM layers, and fully-connected layers (for all baselines
and our models). In the training procedure, the parameters are initialized by the xavier [14] method
and then optimized with the Stochastic Gradient Descent. The batch size is 64. For ABLSTM model,
the concatenation of forward and backward LSTMs gives us a dimension of 256. For HSAN, we
set the number of encoder/decoder blocks as 1 and the number of attention headsD as 8. To achieve
the best performance, we conduct carefully parameter analysis in Section 6.5.

In what follows, four sets of experimental studies are conducted:

—We compare our proposed supervised approaches with state-of-art baselines of supervised
methods.

—We evaluate the performance of unsupervised based models.
—We verify the necessity for the auto-iteration mechanism. Also, we conduct a case study to

identify its ability of detecting mutated and unknown game bots.
—Finally, we further conduct a parameter analysis experiment to analyze the influence of

important parameters.

6.2 Comparisons of Supervised Solutions

Baseline Method.

For our supervised solution, we compare with the following baselines to detect bots from play-
ers, which can also be formulated as a binary classifier.
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—Multi-layer Perceptron (MLP): This method is the most straight-forward way. It takes the
frequencies of EventIDs as inputs. It then feeds them into two fully-connected layers get
the prediction.

—Convolutional Neural Network (CNN): This method is commonly used to capture the local
patterns of players’ behavior sequences, which operates on the sequential data of EventID
concatenated with additional features of the interval, the count and the level. It then feeds
the sequence data into an embedding layer to get the latent representation of EventID,
following a convolution layer, a average pooling layer and finally a fully-connected layer
to make the prediction.

—Bidirectional LSTM (Bi-LSTM): This method aims to capture the global dependency and tem-
poral information of players’ behavior sequences, which also operates on the sequential data
of EventID concatenated with additional features of the interval, the count and the level.
It then feeds the sequence data into an embedding layer to get the latent representation of
EventID, following a layer of Bi-LSTM and finally a fully-connected layer to get the result.

—ABLSTM: This is one of the Sequence-level Modeling Variants in our work. (See model
details in Section 5.2.1)

—TL-ABLSTM6: Here, transfer learning is conducted among the pre-trained Sequence Autoen-
coder of task-specific SA-ABLSTM (i.e., main quest, daily quest, and instanced quest). (See
model details in Section 5.2.4)

—SA-ABLSTM: This is the ABLSTM pre-trained with Sequence Autoencoder (Here, we pre-
train the Sequence Autoencoder for each quest, respectively).

—HSAN: This is another Sequence-level Modeling Variants in our work. (See model details in
Section 5.2.1)

—TL-HSAN6: Here, transfer learning is conducted among the pre-trained H-Trans of task-
specific HSAN (i.e., main quest, daily quest, and instanced quest). (See model details in
Section 5.2.4)

—Trans-HSAN: This is the HSAN pre-trained with H-Trans (Here, we pretrain the H-Trans
for each quest, respectively).

Performance. The experiment results are shown in Table 1, with Precision, Recall and F1 as
evaluation metrics. The bold numbers are the best results of all. First, we find that the performances
of MLP, CNN, and Bi-LSTM are not good enough. The reason might be that they cannot effectively
capture the local dependency and global dependency of players’ behavior sequences. Next, let’s
take a look at the utility of transfer learning in our framework. Surprisingly, we observe that the
performance of TL-ABLSTM (or TL-HSAN) only slightly decreases compared with SA-ABLSTM
(or Trans-HSAN). However, with the help of transfer learning, we could save lots of training time
in unsupervised-based Seq2vec but still get really good result. Furthermore, we can observe that
the two variants of supervised-based classifier yields the best result on different quests, though SA-
ABLSTM and Trans-HSAN process their unique advantages on specific task over the other. This
is likely due to the fact that SA-ABLSTM tends to be incapable of remembering long sentences,
while Trans-HSAN shows more advantage in capturing the global dependency in long sequence.
Since player sequences of main quest and instanced quest are relatively long, Trans-HSAN always
performs better in this case. On the other hand, Trans-HSAN foregoes the inductive bias of RNN-
based model, while SA-ABLSTM’s capability of learning iterative or recursive transformations is
really crucial especially when the sequence is not very long. Since daily quest is the kind of task

6TL-ABSLTMab or TL-HSANab means ‘a’ quest transfers to ‘b ’ quest, where ‘m’ is an abbreviation of main quest, ‘d’ is

an abbreviation of daily quest, ‘i’ is an abbreviation of instanced quest.
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Table 1. Performance Comparison of Supervised Method

Precision Recall F1
MLP 0.9618 0.9773 0.9694
CNN 0.9721 0.9807 0.9764
Bi-LSTM 0.9809 0.9865 0.9837
ABLSTM 0.9851 0.9882 0.9866
TL-ABLSTMim 0.9878 0.9896 0.9887

Main quest TL-ABLSTMdm 0.9893 0.9906 0.9899
SA-ABLSTM 0.9904 0.9912 0.9908
HSAN 0.9713 0.9753 0.9733
TL-HSANim 0.9902 0.9931 0.9916
TL-HSANdm 0.9912 0.9935 0.9923
Trans-HSAN 0.9921 0.9943 0.9932

MLP 0.9528 0.9609 0.9568
CNN 0.9633 0.9712 0.9672
Bi-LSTM 0.9709 0.9728 0.9718
ABLSTM 0.9716 0.9774 0.9745
TL-ABLSTMid 0.9736 0.9721 0.9728

Daily quest TL-ABLSTMmd 0.9771 0.9742 0.9756
SA-ABLSTM 0.9838 0.9861 0.9849

HSAN 0.9713 0.9753 0.9733
TL-HSANid 0.9789 0.9800 0.9794
TL-HSANmd 0.9793 0.9809 0.9801
Trans-HSAN 0.9802 0.9855 0.9828
MLP 0.9441 0.9571 0.9506
CNN 0.9552 0.9643 0.9597
Bi-LSTM 0.9612 0.9732 0.9672
ABLSTM 0.9674 0.9786 0.9730
TL-ABLSTMdi 0.9698 0.9801 0.9749

Instanced quest TL-ABLSTMmi 0.9704 0.9808 0.9756
SA-ABLSTM 0.9721 0.9816 0.9768
HSAN 0.9723 0.9818 0.9770
TL-HSANdi 0.9743 0.9744 0.9743
TL-HSANmi 0.9765 0.9754 0.9759
Trans-HSAN 0.9784 0.9823 0.9803

that will not occupy too much time, the player sequences are relatively shorter, which is the main
reason why SA-ABLSTM performs better in daily quest.

Convergence speed. To further illustrate the convergence speed of our method, we plot the
objective vs. the number of epochs in Figure 7. We find that Trans-HSAN always starts with the
best initial parameters and converges fastest to the lowest loss value in all quests, which illustrates
the advantage of Trans-HSAN in efficiency. Notice that SA-ABLSTM shows a similar convergence
speed with Trans-HSAN in daily quests. The reason is that the parameter number of SA-ABLSTM is
relatively few when the sequence is not very long, which contributes to its convergence speed. Fur-
thermore, we observe that the pre-training step can really help our model converge well (ABLSTM
vs. SA-ABLSTM and HSAN vs. Trans-HSAN). Also, we present the results of TL-ABLSTM models
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Fig. 7. Convergence speed comparison of ABLSTM and its extensions.

Fig. 8. t-SNE visualization of clustering result of SA-DBSCAN.

to illustate the utility of transfer learning. Comparing to the ABLSTM model, the two TL-ABLSTM
models start with better initial parameters and converge faster to lower loss value, which demon-
strates the feasibility of transfer learning.

6.3 Evaluation of Clustering Solution

We further conduct experiments to validate the effectiveness of our clustering solution in bot
detection. Due to space limit, we only present the experimental result of SA-DBSCAN (Sequence
Autoencoder and DBSCAN) in Figure 8, while the Trans-DBSCAN (H-Trans and DBSCAN) shows
similar result. Figure 8 visualizes the clustering result of SA-DBSCAN in 2-d t-SNE embedding
plots. The clusters are assigned different colors to differentiate them. Their relative positions and
densities provide rich information, which can help us quickly understand the similarity between
players and the diversity of each cluster. We can find out the small-scale clusters from the result,
which are game bots to a large extent. Game bots in a certain cluster are more similar to each other
than to those in other clusters. The detection accuracy of each cluster of game bots is marked in
the figure, which shows a good estimate of bots.

6.4 The Necessity of the Auto-iteration Mechanism

Based on Figure 8(a), we further extract the top six typical clusters to analyze their characteristic.
Specifically, the type of each typical cluster is labeled as ground truth by the operation teams,
shown in Table 2. What we want to focus on is the clusters belonging to mutated game bots and
unknown game bots, which are indispensable for constructing new botset during auto-iteration
mechanism.

We compute the prediction probability distribution of each cluster in order to determine the
cluster type it belongs to. The results are shown in Figure 9. We can see that, Cluster “10” is the
largest cluster with low probabilities, which is considered as human players. Small-scale clusters
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Table 2. Cluster Type of Figure 8(a)

Cluster ID Cluster Type Description
10 Cluster of human
6 Cluster of unknown game bots
5 Cluster of known game bots

1, 3, 4 Cluster of mutated game bots

Fig. 9. Clusters’ probability distribution in Figure 8(a).

Fig. 10. Performance with the auto-iteration mechanism.

surrounding cluster “10” are all game bots. For example, cluster “6” with low probabilities is evalu-
ated as unknown game bots, while cluster “5” with high probabilities as known game bots. Cluster
“1,” “3,” and “4” with middle probabilities are evaluated as mutated game bots. This demonstrates
the effectiveness of identifying cluster type according to probability distribution when conducting
the auto-iteration mechanism.

Secondly, we evaluate the performance of our framework with the auto-iteration mechanisms,
as shown in Figure 10. The left columns are our framework without the auto-iteration mech-
anisms, while the right columns are our framework with the auto-iteration mechanisms. In a
real MMORPG production, we set the short-term cycle as 1 month and the long-term cycle as
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Fig. 11. Hyper-parameter analysis.

3 months. Of all the quests, we observe the same results that the performance of our framework
with auto-iteration mechanism merely decreases slightly during a short-term cycle and almost re-
mains unchanged thanks to long-term cycle. Whereas, the performance of our framework without
the auto-iteration mechanisms decreases rapidly over time.

6.5 Parameter Sensitivity

In this section, we present the suitable range of some crucial hyper-parameters for reference. There
are three important types of hyper-parameters affecting the model performance, which are the the
embedding size of EventID devent, the context window of time-interval event2vec c , the length of
players’ behavior sequence N , and the learning rate lr . To decide the default parameters settings,
we vary the values of major parameters to observe how the F1 changes in the task of bot detec-
tion. In detail, we set the embedding size of EventID devent as 32, 64, 128, 256, and 512; the context
window of time-interval event2vec c as 3, 5, 10, 15, and 20; the length of players’ behavior se-
quences N as 100, 500, 1,000, 1,500, and 2,000; and the learning rate as 1e-6, 1e-5, 1e-4, 1e-3, and
1e-2, respectively. Please be noted that the value of context window c remains as 5 while studying
the embedding size devent, the length of players’ behavior sequence N and the learning rate lr ; the
value of embedding size devent remains as 128 while studying the context window c , the length of
players’ behavior sequence N and the learning rate lr ; the length of players’ behavior sequence
N remains as 1,000 while studying the context window c , the embedding size devent and the learn-
ing rate lr ; and the learning rate lr remains as 1e-2 while studying the context window c and the
embedding size devent.

Due to space limitations and easier handling, we only present the results on HSAN in Figure 11.
From Figure 11(a), we observe that our model yields good results when devent is set to 128. The
reason is that bigger devent needs more parameters to be learned which will become difficult to
train, while smaller devent is not enough to represent the latent information. From Figure 11(b), we
can see that the best performance can be achieved when c is set to 10. It can be explained that small

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 6, Article 65. Publication date: September 2020.



65:22 J. Xu et al.

context window can not provide us enough information, while too large context window would in
turn prevent us from capturing the most important part of the sequence data. From Figure 11(c),
we observe that our model yields good results when N is shorter than 1,000, while the performance
will decrease if N is too long. The reason is that a too short sequence length can not represent the
players’ portrait, while too long sequence length is not necessary and will significantly decrease
the algorithm efficiency. Figure 11(d) shows that our model performs best when lr is set to 1e-2.
A bigger learning rate may lead to divergence, while a smaller learning rate may lead to slow
convergence.

Based on these results, for NGUARD, the embedding size of EventID devent is set to 128, the
context window of time-interval event2vec c is set to 10, the length of players’ behavior sequence
N is set to 1,000, and the learning rate lr is set to 1e-2, because that these default settings can
achieve good performance in the task of bot detection.

7 CONCLUSION

Game bots accumulate cyber assets and level up in a fast manner without sufficient effort, which
has a severe adverse effect on human players in online games. The game industry has suffered
serious threats from game bots, and game bot detection remains one of the most urgent problems
that game publishers need to address. Hence, our major problem is that how to detect game bots
that come along with almost every MMORPG.

In this article, we propose a generalized game bot detection framework for MMORPGs termed
NGUARD+. Considering the different behavioral patterns between human players and game bots,
we employ a combination of supervised and unsupervised methods to detect game bots based on
user behavior sequences. Supervised models are utilized to detect game bots in observed patterns
according to the training data. Meanwhile, unsupervised solutions are employed to detect clus-
tered game bots and help discovering new bots. For supervised models, we propose two variants
for sequence modeling: ABLSTM and HSAN, which are capable of capturing both local and global
dependency in user behavior sequences. Furthermore, we propose an auto-iteration mechanism
to automatically adapt to the mutated and new game bots, which is suitable for rapidly chang-
ing online environment. Extensive experiments have been performed on a real-world MMORPG
dataset, which yield a significant performance gain comparing to traditional methods. What’s
more, NGUARD+ has been implemented and deployed in multiple MMORPG productions in
NetEase Games and received very positive reviews.

For future work, it will be interesting to analyze user characteristics from multi-source data, for
example, integrating the social relationships between users into our framework. In addition, we
mean to generalize our model to more kinds of games such as First-person Shooting games. It’s
also a great challenge to detect game bots in some simple game tasks where the human actions
are very similar to game bots.
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