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Abstract— Mixed integer nonlinear programming (MINLP) 

problems widely exist in various aspects of an oil refinery, from 

crude oil supply chain, crude oil scheduling, production process 

decision-making, to optimal design of heat exchanger network or 

hydrogen network. Due to the NP-hard nature, many MINLP 

problems are difficult to solve efficiently and reliably. In this 

paper, a cooperative algorithm based on an improved particle 

swarm optimization algorithm (PSO) and linear programming 

algorithm (LP) is proposed to solve the complex MINLP 

problems. The PSO-LP cooperative algorithm includes an outer 

module running the improved PSO algorithm, and an inner 

module running LP algorithm, for example, the simplex 

algorithm. The outer module transforms the MINLP problem 

into a LP problem and passes it on to the inner module. The inner 

module feeds back the LP results to the outer module to update 

the MINLP problem. The above procedure iterates continuously 

to get the optimal solution of the MINLP problem. The proposed 

PSO-LP cooperative algorithm is verified using various MINLP 

problems. Results show that the proposed algorithm is 

computationally more accurate and more reliable than the 

existing ones. 

I. INTRODUCTION 

Mixed integer nonlinear programming (MINLP) problems 
widely exist in various aspects of an oil refinery [1], from 
crude oil supply chain, crude oil scheduling, production 
process decision-making, to optimal design of heat exchanger 
network or hydrogen network.  

There are two main algorithms for solving the MINLP 
problem: deterministic algorithm and heuristic algorithm. 
When the objective function exhibits strong nonlinearity and 
non-convex feasible region, deterministic algorithms [2] is 
hard to guarantee global optimal solutions or even impossible 
to solve. On the other hand, although the heuristic algorithm 
has the ability of global optimization in theory, when the 
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feasible region is non-convex, the algorithm is easy to fall into 
the local optimal value which limits its application. 

The general mixed-integer nonlinear integer programming 
problems (MINLP) as follows:  

minimize ( , )f x y  

                 Subjected to ( , ) 0; ( , ) 0h x y g x y               (1) 

,n mx R y I   

where x is defined as n-dimensional continuous variable, y is 
defined as m-dimensional integer variable. 

In this paper, the PSO-LP cooperative algorithm is 
proposed to solve MINLP problems. This algorithm divides 
mixed integer nonlinear programming problem into outer layer 
problem and inner layer problem, the outer problem uses an 
improved particle swarm algorithm and the inner problem uses 
a linear programming algorithm. This algorithm combines the 
advantages of the heuristic algorithm and the deterministic 
algorithm that can reduce outer algorithm variables, as well as 
faster convergence speed and less computation time.  

The rest of the paper is organized as follows. Section 2 
introduces the standard PSO and its features. Section 3 gives a 
PSO-LP cooperative algorithm for solving MINLP. Numerical 
experiments and analysis are shown in Section 4. Finally, the 
conclusions are given in Section 5. 

II. THE STANDARD PSO 

Particle Swarm Optimization (PSO) is a global search 

algorithm based on group intelligence proposed by Kennedy 

and Eberhart [3] in 1995. Like other evolutionary algorithms 

[4], PSO is based on the concept of population and evolution 

and it can search for optimal solutions through competition 

and collaboration among individuals.  

A. Principle of standard PSO algorithm 

The PSO initializes a random particle swarm in the 
solution space, assuming that the position of lst particle in k 

dimension solution space is 
1 2 3( , , ,..., )T

i i i i ikx x x x x , and its 

velocity is defined as 
1 2 3( , , ,..., )T

i i i i ikv v v v v . According to 

the current optimal position of each particle 

1 2 3( , , ,..., )T

i i i i ikp p p p p  and the current optimal position of 

all particles
1 2 3( , , ,..., )T

g g g g gkp p p p p , its velocity and 

position can be updated, formulas are as follows: 

               1

1 1 2 2( ) ( )t t t t t t t t

i i i i g iv wv c r p x c r p x                 (2) 
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                                      1 1t t t

i i ix x v              (3) 

Where r1
 and r2

 are random number between 0 and 1, c1
 and c2 

are learning factor which enables the particles to move closer 
to their own optimal position and the optimal position of the 
group, w is inertia weight.  

B. Parameter selection of PSO 

The parameters of PSO mainly include inertia weight, 

learning factor, maximum speed, etc. 

1) Inertia Weight 
The inertia weight w is used to control the influence of the 

previous velocity of the particle on the current velocity. The 
appropriate selection can make the particle balance the global 
search ability and the local search ability. The commonly used 
dynamic inertia weight is the linear decreasing weight strategy 
[5]: 

                         max max min

max

( )m m
w w w w

L
           (4) 

Here, m is the current iterations, wmax is the initial weight 
and wmin is the inertia weight of getting maximum number of 
iterations, Lmax is the maximum number of iterations. 

2) Learning Factor 
Reasonably setting the learning factor can reduce the 

probability of falling into local optimum and speed up the 
particle groups convergence. The learning factor c1 can adjust 
the step size of the flight to its best position while the learning 
factor c2 can adjust the step size of the flight to the best 
position of the group. 

3) Maximum Speed 
The particle velocity determines the particle’s ability of 

exploration and development. IThe maximum speed can be 
adjusted by the inertia weight. When the maximum speed is 
small, the inertia weight is near 1, and when the maximum 
speed is large, the inertia weight is around 0.2. 

C. Standard PSO Algorithm Flow 

The standard PSO algorithm flow is: 

1) Randomly initialize the particle swarm, randomly 
initialize the position and speed within the initialization range; 

2)  Calculate the fitness function value of each particle; 

3) Compare the current fitness function value of each 
particle with the fitness function value of the best position 
experienced. If it is better, use it as the individual historical 
optimal value of the particle, and use this position to update the 
individual history optimal location 

4) Compare the fitness function value of the current 
individual historical optimal position of each particle with the 
fitness function value of the best position experienced in the 
group. If it is better, use it as the global optimal position, and 
use this position to update the global optimal position. 

5) Update the position and velocity of the particles 
according to formulas (2), (3), and (4). 

6) Exit the algorithm when the termination condition is 
satisfied, otherwise return to step 2). The general termination 
condition is to reach a satisfactory fitness function value or 
reach the maximum number of iterations. 

III. PARTICLE SWARM OPTIMIZATION ALGORITHM AND LINEAR 

PROGRAMMING ALGORITHM COOPERATIVE METHOD 

Particles swarm optimization algorithm and linear 
programming algorithm cooperative method (PSO-LP). It 
divides mixed integer nonlinear programming problem into 
outer problem and inner layer. The outer problem uses an 
improved particle swarm algorithm and the inner problem uses 
a linear programming algorithm. Fig.1 shows the structure of 
the algorithm for the two-layer solution strategy. 

 

Figure 1.  Double layer structure of PSO-LP cooperative algrithm 

In order to better describe the core idea of the PSO-LP 

cooperative algorithm, we transfer general MINLP problems 

into a more specific form: 

                            

1 2 3

1 2 3

1 2 3

1 1 2 2 3 3

, , ,

( , , , ) 0
. .

( , ,

min (

, , ,

)

, ) 0

x x x y

g x x x y
s t

h x x x y

x X x X x

f

X y Y






   

                (5) 

where 
1x  represents strong nonlinear continuous 

variable, 1

1

lX R , 2x  represents strong linear continuous 

variable, 2

2

l
X R , 3x represents weak nonlinear continuous 

variable, 3

3

l
X R , here 

1 2 3, ,l l l show each variable 

dimension which is an integer greater than or equal to 0. y is 

defined as integer variable, 4lY R , 4l is variable dimension 

which is an integer greater than 0. 

1 2 3( , , , ) 0g x x x y  and
1 2 3( , , , ) 0h x x x y  are inequality and 

equality constraint equations separately with the dimension 
number of p , q . 
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A.  Variable Partition Strategy 

Mixed integer nonlinear programming (MINLP) problem 
variables include integer variable y, linear variable x2, 
nonlinear variable (strong nonlinear variable x1, such as 
exponential logarithmic variable; weak nonlinear variable x3, 
such as double product term, etc.) These variables are divided 
into L1 and L2, which correspond to PSO algorithm of the outer 
layer and LP algorithm of the inner layer respectively. The 
partitioning strategy is: 

1) Divide the integer variable y, the strongly nonlinear 
continuous variable x1 into L1, and divide the linear continuous 
variable x2 into L2. 

2) Divide the remaining weak nonlinear continuous 
variables x3 into L1 one by one, and observe the remaining 
variables of x3. If the remaining x3 variables are linear 
variables, divide them into L2. Set variables of x3 be divided 
into L2 called x3L2 and number is l3L2. Similarly, the variable 
assigned to L1 is x3L1 and the number of variables is l3L1, after 
grouping it shows as follows: 

1 21 1 3 2 2 3{ , , } { , }L LL x x y L x x ，  

Assuming that the number of L1 variable is n1, the number 
of L2 variable is n2, so n1=l1+l4+ l3L1, n2=l2+ l3L2. 

B. Improvements in the PSO of outer layer 

   Dual fitness functions 

In this paper, the dual fitness function and the tolerance of 

particles that do not satisfy the restrictions are introduced in 

improved PSO algorithm to solve constraint problem with 

massive equation. The dual fitness functions are
1,

m

lf and
2,

m

lf , 

the system tolerance for default particles is g. 
1,

m

lf is improved 

objective function and
2,

m

lf is default function of defined 

particle, they are defined as following formulas: 

                              
1, 1, 2, 3,= ( , , , ,)m

l l l l lf f x x x y           (6) 

            
1 1

2, , 1, , 1,

0 0

= ( max( ( ),0)) ( | ( ) |)
p q

m

l g i l h i l

i i

f k g L k h L
 

     (7) 

where m is the current iteration number, g(L1)≤0 is the 

inequality constraint equation sets containing the L1 variable, 

the number of equation set is p1, kg,i is the default coefficient of 

inequality constraint equation sets. h(L1)=0 means equality 

constraint equation sets with L1 variables, the number of 

equations is q1, and kh,i is the default coefficient of this kind of 

equation sets. 

The pros and cons of particles are judged by comparing 

two fitness functions, and the rule of judgment is Deb criterion 

[6]. The Deb criterion gives the criterion for the superiority 

and inferiority of the particle under the constraint of the 

objective function. However, the judgment of the particle near 

the boundary is too absolute. For the case where the optimal 

solution is in the boundary, the Deb criterion can only make 

the particle converge from the feasible solution side to the 

optimal solution without using the spatial information on the 

side of the infeasible solution. Therefore, this paper improves 

the Deb criterion and gives the function representation of the 

system tolerance.  

The improved criterion is as follows: when
12,

m

lf ≤g and 

22,

m

lf ≤ g, the smaller particle of
11,

m

lf and
21,

m

lf is superior; 

otherwise, the smaller particle of
12,

m

lf and
22,

m

lf is better; where g 

is the tolerance of the system to the default particle, and the 

iteration formula is: 

                     12 2
( )

3
3

m mm
g g

s M

N

 
 

    



          (8) 

where s is the number of particles that satisfy
2

mf ＞0,  is a 

set value and  is a small positive number. 

 Linear robustness 

The robustness [7] of the optimization problem means that 

under the disturbance of certain parameters, the solution of the 

optimized problem can maintain certain characteristics. The 

parameters here can be external environment parameters 

or objective function parameters or constraint parameters.  

The robustness of the solution has been considered and 

uncertain set of
11, 3 ,[ , ]T

l l L lx x x is determined: 

                     1 2{ | [ , ]}
l

m m m m m

x l l l lD x x x e x e               (9) 

where m

lx is a nominal value, e1 and e2 are parameters of 

uncertainty. When calculating the improved objective function 

of the mth iterative particle, randomly choosing parameters for 

C times from the uncertain set of xl, then finding the mean as 

the improved objective function value for each particle: 

                                 1, 1, ,

1

1
= ( )

c
m m m

l l l j

j

f f x
c 

                    (10) 

,

m

l jx is defined as the random value of uncertain set 
l

m

xD . In 

simple terms, for the parameter fluctuations existing in the 

industry, the robustness of the solution can help exclude some 

sharp points with poor robustness in the solution space. 

 Double mutation strategy 

Outer improved PSO algorithm uses particle mutation 

probability function: 

                                    ReP             (11) 

 and  are disturbance rate adjustment parameters and 

Re is a parameter which implies whether there is a significant 

optimization of the particle swarm optimization. The optimal 

value of the mth generation particle swarm is defined as O(m), 

and   is a threshold variable that measures whether optimal 

value has a significant change and is a positive number, if| 

O(m)- O(m-1)|≤ , It means that the optimal value of the mth 

generation particle swarm is not significantly optimized, Re is 

set Re+1, otherwise, the optimal value does not change 

significantly, then Re equals 0. 

Improved PSO algorithm compares the particle's own 

optimal position pBest[l] and the group optimal position gBest 

each time, and compares P with the random value Pr in (0,1). 

When Re increases continuously, the probability of P being 

greater than the random value Pr will increase; when P≥Pr, 
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the current gBest is saved and the following particle mutation 

is performed: 

Particle mutation is a double mutation strategy, which has 

strategy 1 and strategy 2 respectively. Rep1 is the number with 

no optimal optimization of the optimal value after the particle 

has undergone the mutation strategy, and Mp1 is its threshold 

value, which is used for the selection of the mutation strategy. 

Rep2 and Mp2 have the similar definition. 

When Rep1≤Mp1, choosing the first mutation strategy: 

                     1

m m m

l l l v

M m
V V V

M
 


             (12) 

        1, 1, 1, 1

m m m

l l l L

M m
L L L

M
 


          (13) 

m

lV is the velocity of lth particle and 
1,

m

lL is the position of 

lth particle, 
1v is mutation coefficient of velocity, 

1L is 

mutation coefficient of position, m is current iterations and M 

is total iterations,   is a random number obeying the standard 

normal distribution N(0,1). 

When Rep1＞Mp1, choosing the second mutation strategy: 

       2

m

l v

M m
V

M
 


                     (14) 

      1, 1, 2

m m

l gBest L

M m
L L

M
 


            (15) 

2v is mutation coefficient of velocity, 
2L is mutation 

coefficient of position, 
1,

m

gBestL is the global optimal particle 

position, after mutation strategy, Rep1 is reset to 0 and 

Rep1=Rep1+1. 

After the particle mutation, the linear programming 

algorithm of the inner layer is used to solve the parameter 
2,

m

lL , 

then recalculating the fitness value of the particle group. 

Updating pBest[l] and gBest, and replace the worst-fitted 

particles with current gBest, and reset Re to 0. 

 Termination condition setting 

The termination condition is set to two, one is that if 

iteration number is greater than the maximum number, the 

algorithm is terminated, and the other is Rep2 exceeds Mp2, and 

the algorithm terminates. This can ensure that the algorithm 

does not take too long and help end the algorithm early after 

the algorithm converging. 

C. PSO-LP Cooperative Algorithm Step 

Combined with the flow chart of PSO-LP cooperative 

algorithm shown in Fig2, the specific algorithm steps are as 

follows: 

Step1: The variables in the MINLP problem are divided 

into two parts, L1 and L2, which respectively correspond to the 

outer simplified mixed integer nonlinear problem and the inner 

layer linear programming problem. 
Step2: Initializing the outer improved PSO algorithm, the 

number of initial populations is N; the total number of 
iterations is M; the velocity boundary [Vmin, Vmax] and the 
position boundary [L1min, L1max] are determined; Particles 

uniformly generate the initial position 0

1,lL in the space of m1 

dimension and randomly generate initial velocity 0

lV , where l 

= 1, ..., N. 

Step3: After outer improved PSO solving operations, the 
problem is transformed into a linear programming problem. 
The inner layer problem solving module is used to solve the 

parameter L2, and the solution of the parameter L2 is
2,

m

lL , 

where m is the current number of iterations, the initial solution 

is 0

2,lL . 

Step4: Outer improved PSO update the particle's own 
optimal position pBestm[l] and the group optimal position 

gBestm according to the values of [
1,

m

lL ,
2,

m

lL ] and 

1,

m

lf ,
2,

m

lf which are related to the robustness of solutions. 

Step5: Calculate the particle mutation probability function 

value P, then comparing with a random value Pr in (0,1), if P

≥ Pr, start particle mutation in the group, different mutation 

strategy is used to update the parameters according to the 

relationship between Rep1 and Mp1. After particle mutation, the 

the updated parameters
2,

m

lL ,
1,

m

lf ,
2,

m

lf , pBestm[l], gBestm can be 

obtained. If P≤ Pr, go directly to step6. 

Step6: It is judged whether the termination condition m>M 

or Rep2>Mp2 is satisfied, where Mp2 is the threshold number of 

times of performing the second particle mutation strategy. If 

the termination conditions are not satisfied, let m=m+1. 

According to the particle's own optimal position pBest[l] and 

the group optimal position gBest, update the velocity m

lV and 

the position
1,

m

lL , and return to step2, if any termination 

condition is met, the algorithm ends. 

IV. NUMERICAL EXPERIMENTS AND ANALYSIS 

To evaluate the performance of the proposed algorithm, an 
experiment on a benchmark function has been conducted, the 
benchmark functions [8] as follows: 

2

1 2 1

1 2

2

1

1 2

min ( , , ) 0.7 5( 0.5) 0.8

exp( 0.2) 0

1.1 1
. .

1.2 0.2 0

0.2 1, 2.22554 1, {0,1}

f x x y y x

x x

x y
s t

x y

x x y

    

   


  


  
       

        (16) 

It is obvious that strong nonlinear continuous variable is x1; 
weak nonlinear continuous variable is x2; integer variable is y. 
In line with PSO-LP cooperative algorithm, variables in the 
problem are grouped as follows: 

1 1 2 2{ , }, { }L x y L x   

The number of elements in the group L1 is 2, number of 

elements in the group L2 is 1. After dividing variables into two 

groups, several parameters in the algorithm are set, such as 

initial swarm number is N=200, total number of iterations is 

M=25; velocity boundary is [Vmin,Vmax]=[-0.01,0.01],position 

boundary is [L1min,L1max]=[{0,0,0,0},{10,10,1,1}]; particle 
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initial position is generated evenly as 0

1,lL ,particle initial 

velocity is 0

lV ,l=1,…,200; the tolerance of the system to the 

default particle g=0.1, =0.05 ; ,  in particle mutation 

probability function are set 0.2 and 0.03 separately. Taking 

parameters into the model and the results can be obtained by 

MATLAB. 

 

Figure 2.  Flow chart of  PSO-LP cooperative algrithm

The theoretical solution is [x1,x2,y]=[0.94194,-2.1,1],and 
the objective function value f=1.07654, while the optimal 
value given by PSO-LP is [v1,v2,v3,v4,v5]=[0.9419,-2.1,1], the 
objective function value f=1.07654727. Comparing the two 
results, PSO-LP cooperative algorithm is basically the same as 
theoretical values. 

According to the results, the average number of iterations 
of PSO-LP cooperative algorithm is 6386. The optimal values 
of each iteration have been collected and drawn in Fig.3. It is 
easy to show objective function value has already very close to 
the optimal value after the tenth iteration and tend to be stable. 
This indicates PSO-LP cooperative algorithm can quickly 
converge and find the optimal solution, which greatly 
improves the efficiency of the solution. 

To verify the stability of the algorithm accuracy, the 
PSO-LP cooperative algorithm has been run independently 30 
times, the results are shown in the Fig.4. Then the relative error 
between the running result and the theoretical value has been 
calculated, it shows the maximum relative error is 0.03%, 
which strongly illustrates the accuracy and stability of PSO-LP 
cooperative algorithm. 

In order to prove that PSO-LP cooperative algorithm has 
advantages over existing algorithms. Two algorithms which 
achieve great results in solving MINLP problems have been 
selected to be compared: Differential evolution algorithm with 
chaotic local search (CLSDE) and Particle swarm 
optimization (PSO [10]). CLSDE [9] is an improved 
differential evolution algorithm which enhances the local 
search ability. 
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Figure 3.  Objective function optimal value under different iterations 

 

Figure 4.  Relative error between actual result and theoretical value 

All three algorithms (PSO-LP, CLSDE, PSO) mentioned 
above are used to solve the benchmark functions [8] at the 
same time. Compare the optimization result of POS-LP 
cooperative algorithm with other algorithms among the 

following four factors: the best result
bf ,the worst result

wf , 

the average value of all results f  and the standard 

deviation
f . The results of the comparison are shown in the 

Table 1. 

From the table it is obvious that POS-LP cooperative 
algorithm has a better performance in the listed algorithms, its 
standard deviation is the smallest among all algorithms; the 
optimal value and the average value are basically the closest to 
the theoretical optimal value. As an optimization algorithm of 
PSO algorithm, it successfully improves the accuracy of the 
algorithm on the basis of the original PSO. 

TABLE I.  OPTIMIZATION RESULTS OF DIFFERENT ALGORITHMS 

 
bf  

wf  f  f  

CLSDE[9] 1.0769 1.0787 1.0777 5.8905e-4 

PSO[10]  1.076568 1.140703 1.079864 9.948e-3 

  PSO-LP  1.076545  1.076870  1.076693 7.54995e-5 

*theoretical optimal f=1.07654 

V. CONCLUSION 

In this paper, an improved particle swarm optimization 

algorithm and linear programming algorithm (PSO-LP) 

cooperative algorithm is proposed for the MINLP problem. 

The outer layer of the algorithm uses the improved particle 

swarm algorithm (PSO) module, and the inner layer uses the 

linear programming algorithm (LP) module, the optimal 

solution to the MINLP problem is obtained through iterative 

updating of the inner and outer modules.  

In improved PSO module, a dual fitness function is 

introduced to filter the particles that do not satisfy the 

constraint and select the optimal particles to enhance the 

algorithm's ability to search for the boundary. The particle 

mutation probability function and the double mutation strategy 

are introduced to prevent the particles from falling into local 

optimum in the early stage and enhance the local optimization 

ability in the later stage. Then the PSO-LP cooperative 

algorithm is applied to a standard test function for verification, 

and the computational complexity, correctness rate and results 

are analyzed and compared with other algorithms. The results 

show that the algorithm has better global search ability than 

other algorithms, proving the effectiveness and stability of the 

algorithm for solving the MINLP problem.  
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