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Abstract

Machine learning (ML) technologies have
achieved significant success in various downstream
tasks, e.g., node classification, link prediction,
community detection, graph classification and
graph clustering. However, many studies have
shown that the models built upon ML technologies
are vulnerable to noises and adversarial attacks.
A number of works have studied the robust models
against noise or adversarial examples in image
domains and text processing domains, however, it
is more challenging to learn robust models in graph
domains. Adding noises or perturbations to the
graph data would make robustness more difficult to
enhance – the noises and perturbations on edges or
node features can easily be propagated to neighbors
through the graph’s relational information. In this
paper, we investigate and summarize the existing
works that study the robust deep learning models
against adversarial attacks or noises on graphs,
namely the robust learning (models) on graphs.
Specifically, we first provide some robustness
evaluation metrics of model robustness on graphs.
Then, we comprehensively provide a taxonomy
which groups robust models on graphs into five
categories: anomaly detection, adversarial training,
pre-processing, attention mechanism, and certifiable
robustness. Besides, we emphasize some promising
future directions in learning robust models on
graphs. Hopefully, our works can offer insights for
the relevant researchers, thus providing assistance
for their studies.

1. Introduction

Machine learning (ML) technologies have become
increasingly popular. They have attained impres-
sive performances and successful applications on
various downstream tasks such as image classifica-
tion, object detection, traffic prediction, malware

detection [1, 2, 3], speech recognition [4], auto-
matic language translation [5], product recommen-
dations [6, 7], self-driving vehicles [8], online fraud
detection and stock market trading [9, 10], etc.
Deep Neural Networks (DNNs), the most popu-
lar tool among machine learning technologies, are
widely used in many real-world applications. How-
ever, many studies have shown that DNN models
are not robust enough, that is, they are easily be
fooled by noises or adversarial examples (that is,
the examples that are carefully designed to deceive
the models by making minor or even impercepti-
ble modifications to benign examples). A line of
existing works has shown that DNNs are vulnera-
ble in many applications, such as malware detec-
tion [1, 2, 3], audio recognition [11], object recog-
nition [12], sentiment analysis systems [13], etc. It
is an urgent need to study robust models using ma-
chine learning technologies.

The graph-structured data is ubiquitous and
plays a key role in many practical fields, includ-
ing social network analysis, bioinformatics, chem-
istry, program analysis, etc. These graphs provide
rich topology functions and common connectivity
patterns, thus can help us better understand re-
lational data. Deep learning on graphs has also
achieved significant success in a wide range of ap-
plications [14], including financial surveillance [15],
recommendation systems [16], molecule analysis [17]
and drug discovery [18], etc. However, network
data is hard to obtain and most networks obtained
in the real world are error-prone and structurally
flawed due to incomplete sampling [19], imperfect
measurements [20, 21], individual non-response and
dropout [22], etc. This will inevitably introduce
many types of errors, including erroneous, ambigu-
ous and redundant information [23]. Thus, most
network data obtained depicts an imperfect and in-
complete picture of topological structure. These in-
accurate representation of networks can even have
an adverse effect on how networks are interpreted



and damage information diffusion process, result-
ing in misleading conclusions. On the other hand,
graph learning models, e.g., Graph Neural Networks
(GNNs) [24, 25, 26, 27, 17, 28, 29, 30] and network
embedding [31, 32, 33, 34], have been shown to be
vulnerable to adversarial examples [35, 36, 37, 38].
Adversarial attacks on graphs pose themselves as
serious security challenges for many real-world sys-
tems. There have been lots of works focus on
learning the robust models in image domains, but
few have been studied the robustness of models on
graphs. Hence, it is of practical importance to build
robust learning models on graphs against noises or
adversarial attacks.

There have been a few surveys mentioning the
robustness of deep learning models on graphs [39,
40]. Although they provided their own categories
of robust graph models, they did not include some
important robustness metrics. In addition, anomaly
detection, the most commonly-used approach to en-
hance robustness, is ignored in the previous sur-
veys. In this survey, we first introduce the robust-
ness metrics and then aim to summarize and discuss
the robust learning models on graphs against noises
and adversarial examples from a more comprehen-
sive perspective. The major contributions can be
summarized as follows:

• We target the critical yet overlooked robust
models on graphs against noises and adver-
sarial attacks.

• We provide some evaluation metrics of model
robustness on graphs.

• We divide existing works of robust models on
graphs into five categories: anomaly detec-
tion, adversarial training, pre-processing, at-
tention mechanism, and certifiable robustness.
We provide a detailed and systematic analysis
of these studies.

• We present some exciting future directions of
the model robustness on graphs.

Our manuscript is organized as follows. Some
notations and backgrounds are mentioned in sec-
tion 2. In section 3, we show some evaluation met-
rics of model robustness on graphs. In section 4,
we introduce the five categories of robust models on
graphs in detail. Some future directions are pre-
sented in section 5. We conclude our manuscript by
providing a conclusion in section 6.
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Figure 1: The category of robust learning models
on graphs.

2. Preliminaries

2.1. Notations

Formally, we represent a network as G = (V, E),
where V is the set of nodes with |V| nodes, while
E is the set of edges with |E| edges. We denote A
as the adjacency matrix of G and D as the degree
matrix of A. We further augment G with the node
feature matrix X if nodes have certain features in
particular applications. Also in some applications
where edges have features, we augment G with the
edge feature matrix H.

2.2. Victim models

In this survey, we use victim models to denote
the models vulnerable to adversarial examples, also
known as non-robust models. We mainly discuss
two kinds of victim model, i.e., GNN-based model
and network embedding models.

The intuition of GNNs follows that of CNNs. It
keeps aggregating and transforming the information
from neighbor nodes to learn the representations for
each node. Though GNNs have achieved impressive
performance across many kinds of tasks, the vulner-
ability of GNNs has been demonstrated as potential
threats to industry and society applications [41, 40].

Besides, another important graph learning algo-
rithms, network embedding models, are also vulner-
abile to adversarial examples. Such kind of models
include LINE [42] and Deepwalk [32], and knowl-
edge graph embedding [43].

2.3. Learning from graph data

In this section, we introduce the basic graph learn-
ing tasks: node classification and graph classifica-



tion. We use triple set G = {(ci,Gi, yi)}i∈[N ] to
denote the training set with labels, where N is the
number of the samples, ci is the i-th sample and Gi

and yi represent the corresponding (sub)graph and
the label of ci, respectively. The loss function of
conducting classification task is given below:

min
θ

Ltrain(fθ(G)) =
∑

(ci,Gi,yi)∈G

ℓ (fθ(ci,Gi), yi) ,

(1)
where fθ is the mapping function learned to predict
the true labels with learnable parameters θ. As for
node-level classification task, each node lies in the
same graph Gi = G = (V, E) and fθ(ci,Gi) = fθ(G)i
extracts the i-th node’s representation from the
whole single graph. For graph-level classification
task, each individual graph Gi = (Vi, Ei) has a la-
bel and fθ(ci,Gi) = fθ(Gi) extracts the i-th graph’s
representation independent with other graphs.

2.4. Adversarial attacks on graphs

In this section, we give a general form of the objec-
tive for graph adversarial attacks and illustrate the
damage of the attacks which indicates the urgent
need to research into robust models on graphs.

Graph adversarial attacks. In image domain,
the attack is straightforward to introduce small per-
turbations into pixels (showed as Figure 2) which is
a little different from that in graphs. As illustrated
in Figure 3, the target of graph attack can be both
graph topology and node features. Formally, based
on the formula showed in Section 2.3, we can define
the attack objective on graph data as:

max
Ĝ∈Φ(G)

∑
(ci,Ĝi,yi):i∈T (G)

ℓ
(
fθ∗(ci, Ĝi), yi

)
(2)

s.t. θ∗ = argmin
θ

Ltrain(fθ(G
′)), (3)

where Ĝ denotes the perturbation set of G includ-
ing adversarial graphs Ĝi = (Âi, X̂i). As for tar-
get set, T (G) = G holds in untargeted setting and
T (G) consists of targeted samples in targeted at-
tacks. G′ = G represents the evasion attacks while
G′ = Ĝ when the attacks are poisoned. Note that
in most cases, the attacks should be limited in a
constrained domain Φ(G) to ensure the perturba-
tions are imperceptible. Formally, given the dis-
tance function d of G and the perturbation budget
∆, for any Ĝi ∈ Φ(G), Ĝi should satisfy the con-

straint:

d(Ĝi,Gi) ≤ ∆. (4)

Why to study graph robust learning. Signif-
icant success in a large number of applications [14]
has been promoted by deep learning on graphs, in-
cluding molecule analysis [17], drug discovery [18],
financial surveillance [15] and recommendation sys-
tems [16], etc. However, some works [36, 35, 37, 38]
have exposed the potential danger that these ap-
proaches are vulnerable to adversarial examples. In
other words, the models are easy to be deceived
by the attacks that are carefully designed to them
by making subtle or even human-incomprehensible
modifications to benign examples. Therefore, ad-
versarial attacks themselves are serious security
challenges for many real-world systems and iden-
tifying the weaknesses of these graph learning mod-
els to make them more robust to different kinds of
attacks are very urgent.

Figure 2: A demonstration of adversarial example in
image domain. By injecting a small perturbation,
”panda” is classified as ”gibbon”. (Image Credit:
[12])

Figure 3: An illustration of adversarial example in
graph structure. By creating a new connection be-
tween node 3 and node 7 and modifying the fea-
tures, originally green node 7 is predicted as blue
one. (Image Credit: [40])



3. Robustness metrics

We here introduce some metrics to measure the ro-
bustness of graph models. Note that in this section,
we use (a,x) to denote an original example in the
dataset, where a is the adjacency matrix and x is
the node feature matrix.

Classification margin. Classification margin is a
common metric to determine whether a node is cor-
rectly classified, which can also been used to mea-
sure the robustness of GNNs [44, 45]. This metric
focuses on the label space which implies it changes
for different downstream tasks. Besides, classifica-
tion margin measures the robustness in a static per-
spective and the scope of investigation is limited in
a dataset itself. For example, given a model, the
most vulnerable example lies in the dataset which
achieves the maximum value of the metric.

Definition 1 (Classification margin.) Let y∗ de-
note the class (using some ground truth) of example
(a,x). The classification margin of (a,x) is

CM(a,x, g, y∗) = max
y∈Y\{y∗}

ln p(ŷ = y)−ln p(ŷ = y∗),

where g is the classifier, ŷ = g(a,x) and Y denotes
the label space. A smaller value of CM(a,x, g, y∗)
indicates a more robust g.

Adversarial risk and adversarial gap. The
adversarial risk and the adversarial gap measure a
given model’s vulnerability to the input perturba-
tions on graph structure and node features [46]. Dif-
ferent from the classification margin, these two met-
rics measure the robustness in a probability manner.
More specifically, they will examine the continuous
adversarial examples in a small budget, and they
will consider the robustness of the encoder for the
whole dataset instead of focusing on one specific ex-
ample.

Definition 2 Denote (S, d) as the input metric
space. For any classifier g : S → Y, given the ad-
versarial budget τ ≥ 0, the adversarial risk of
model g is

Adv riskτ (g) =
Ep(s,y∗)[∃ s′ = (a′,x′) ∈ B(s, τ)
s.t. CM(a′,x′, g, y∗) ≥ 0],

where B(s, τ) = {s′ ∈ S : d(s′, s) ≤ τ} represents
the perturbation set of s. Then, the adversarial
gap is proposed to measure the relative vulnerability

(based on adversarial risk) of a given model g w.r.t
the adversarial budget τ , which can be defined as:

Adv gapτ (g) = Adv riskτ>0(g)−Adv riskτ=0(g).

4. Robust models on graphs

The vulnerability of graph learning models poses
major challenges to the reliable and secure appli-
cations on graphs. we target the critical but far
overlooked problem of learning robust models on
graphs.

In this section, we divide existing works of ro-
bust models on graph into the following five cate-
gories, i.e., (1) anomaly detection, (2) adversarial
training, (3) pre-processing, (4) attention mecha-
nism, and (5) certifiable robustness. Due to its im-
portance and wide range of applications [47, 48],
we specifically classify anomaly detection as a cate-
gory; while others are mainly divided based on the
technical characteristics.

In more details, anomaly detection and pre-
processing methods are both used to correct the un-
derlying attacked graph and obtain a more robust
model training on the fixed graph. Both methods
can defend poisoning attacks through identifying
the attack methods or utilizing some prior assump-
tions to refine the graph. However, the methods are
not in an end-to-end manner which is more time-
consuming in the inference stage. As for attention
mechanism, it aims to decrease the negative influ-
ence of attacks during the aggregation process in the
presence of adversarial attacks. But this will cause
extra learnable parameters and processing time to
infer the downstream tasks. Furthermore, adversar-
ial training and certifiable robustness apply different
strategies to generate attacks from clean graphs to
train the robust models on them, which is from an
attacking-free perspective.

4.1. Anomaly detection

Anomaly detection is one of the most straight-
forward ways to enhance the robustness of models
and systems. The main idea of anomaly detection is
to identify rare and unusual patterns which signif-
icantly differ from the majority of data. There are
usually two main categories of anomalies in anomaly
detection [47]:

• Point anomalies. Anomaly detection on
point anomalies means to detect an individual
anomalous data sample only respect to some
of other data samples.



• Contextual or collective anomalies. Anomaly
detection on contextual or collective anoma-
lies means to detect a set of related or condi-
tional anomalous data samples respect to the
entire graph.

Within anomaly detection methods, identifying
and removing anomalies from the source of data can
increase robustness and reliability of models and
systems constructed on these data. Many technolo-
gies in anomaly detection have been widely used in
a number of real-world applications, e.g., fraud de-
tection [49, 50], game bot detection [2, 3], intrusion
detection [51], fault detection [52], novelty detec-
tion [53].

Considering the inter-dependent and relational
nature of graph-structured data, the anomaly infor-
mation will propagate from nodes to their neigh-
bors, leading to more destructive results. Hence,
anomaly detection on graphs is much more chal-
lenging.

Graph anomaly detection techniques can effec-
tively protect graph data from graph adversarial at-
tacks by exploring the intrinsic difference between
adversarial structures and the clean ones [54]. There
are four methods to distinguish graph adversarial
attacks and help correctly detect adversarial pertur-
bations [40], i.e., (1) link prediction, (2) sub-graph
link prediction, (3) graph generation, and (4) outlier
detection.

Existing works of anomaly detection on graphs
mainly focus on dealing with static graphs and dy-
namic graphs [48]:

• Anomaly detection on static graphs. Given
the snapshot of a graph database, the objec-
tive is to find the nodes, edges or sub-graphs
that are rare and unusual in the graph.

• Anomaly detection on dynamic graphs. Given
a sequence of graphs, the objective is to find
the timestamps that correspond to a change,
as well as the top-k nodes, edges or sub-graphs
that contribute most to the change.

There exist plenty of works on static graphs.
Jiang et al. [47] design a graph convolution network
model to detect both anomalous behaviors of indi-
vidual users and associated malicious threat groups.
As shown in Figure 4, this model can characterize
entities’ properties as well as structural information
between them into graphs, because only consider-
ing entities’ properties information easily leads to
high false positives. Because traditional anomaly

Figure 4: Graph convolution network model for
anomaly detection using graph data as input. (Im-
age Credit: [47])

Figure 5: The overall framework of OCGNN. (Im-
age Credit: [55])

detection methods such as one-class support vector
machine (OCSVM) lost their effectiveness in graph
data, Wang et al. [55] propose one-class graph neu-
ral network (OCGNN) to combine the powerful rep-
resentation ability of graph neural networks along
with the classical one-class objective. As illustrated
in Figure 5, this hypersphere learning framework is
a natural extension of OCSVM in the field of graph
data.

Compared with static graphs, there exist only a
few works on spotting anomalies by exploiting dy-
namic attributed graphs. Du et al. [56] propose a
deep neural network model, named DeepLog, uti-
lizing Long Short-Term Memory (LSTM) to model
a system log as a natural language sequence. The
model architecture is shown in Figure 6. DeepLog
can automatically learn log patterns from normal
execution and detect anomalies when log patterns
deviate from the model trained from log data under
normal execution. In addition, DeepLog is able to
adapt to new log patterns over time and construct
workflows from the underlying system log.

Even though there have been plenty of works
in developing graph-based abnormality detection



Figure 6: The model architecture of DeepLog. (Im-
age Credit: [56])

problems and algorithms, there are still some limita-
tions of anomaly detection. In theoretical research,
there exist only a few works on spotting anomalies
by exploiting dynamic attributed graphs compared
to plenty of works on static graphs. From systems
perspective, most methods focus too much on de-
tection performance while ignoring adversarial ro-
bustness. In view of practice, it is often hard to
predict what would boost a detection algorithm’s
performance the most, the methods are not end-to-
end and ground truth data is often inexistent.

4.2. Adversarial training

Adversarial training is an important way to enhance
the robustness of neural network. The main idea
of adversarial training is to insert slight pertur-
bations into the training set and then retrain the
model, which normally has good performance on
clean data.

In the image classification scenario, as illustrated
in Figure 2, these adversarial examples which look
like the original images can fool the network. Gen-
erally, these results have often been interpreted as
being a flaw in deep networks [12]. So studying ad-
versarial examples in image data is thought to be ex-
tremely important. There are some training meth-
ods, such as FGSM [12], Fast [57], TRADES [58],
YOPO [59].

In graph domains, the attacker can modify the
graph structure or node features to generate graph
adversarial perturbations to mislead the prediction
of GNN models. Since adversarial training has al-
ready been widely used in the image data, we can
also take this strategy into consideration to defend
graph adversarial attacks. There are two types of
adversarial training: The first one is training with
adversarial goals. Some adversarial training meth-
ods gradually optimize the model in a continuous
min-max method under the guidance of two oppo-
site (minimize and maximize) objective functions,

as shown below [40, 60],

min
θ

max
δA∈PA,δX∈PX

Ltrain (fθ (A+ δA, X + δX)) .

(5)
where δA, δX represent the perturbation added to
A, X, respectively; PA, PX denote the areas of
unnoticeable perturbation.The min-max optimiza-
tion problem in Eq (5) shows that graph adversar-
ial training includes two processes: (1) maximize
the prediction loss by adding perturbations and (2)
minimize the prediction loss by retraining model to
update parameters. Through the above two pro-
cesses, we can get a robust model. Since there are
two inputs, i.e., adjacency matrix A and feature ma-
trix X, adversarial training can be done on them
separately. The second one is training with adver-
sarial examples. During the training process, other
models based on the adversarial model are provided
to the adversarial samples, which helps the model
learn and adjust to adapt to the adversarial sam-
ples, thereby reducing the impact of these potential
attack samples. For instance, Deng et al. [61] pro-
posed batch virtual adversarial training (BVAT) al-
gorithms, which aim to generate virtual adversarial
perturbations to perceive the connectivity patterns
between nodes in the graph to improve the smooth-
ness of the output distribution of the node classifier
(shown in Figure 7 and Figure 8). Chen et al. [62]
proposed two special adversarial training strategies:
global adversarial training (Global-AT) that for all
nodes protection and target label adversarial train-
ing (Target-AT) that can protect the target labeled
nodes from attack. In Global-AT, we select the tar-
get pair of nodes firstly, then update the adjacency
matrix Ât−1 of the (t− 1) adversarial network and
get the adjacency matrix Ât:

Ât
ij = Ât−1

ij + θij . (6)

where Ât
ij and Ât−1

ij are the elements of Ât and

Ât−1. Target-AT only consider the target labeled
nodes, and use the link selected by adversarial net-
work attack to update the adversarial network.

4.3. Pre-processing

The adversarial training-based methods only aim
at resisting evasion attacks, i.e., the attacks oc-
cur during the test time. While the pre-processing
method like purifying the perturbed graph data can
deal with poisoning attacks, i.e., the attacks insert
several fake samples into the training set. In the
poisoning attacks, the attackers tend to add edges



Figure 7: In sample-based BVAT (S-BVAT), two
nodes u and v are selected to calculate the LDS
loss, and the virtual adversarial perturbation is ap-
plied to the elements that have no intersection in its
acceptance area (marked in red and blue). (Image
Credit: [61])

Figure 8: In optimization-based BVAT (O-BVAT),
all nodes are included to calculate LDS loss, and
the virtual adversarial perturbation of all nodes is
optimized together. (Image Credit: [61])

rather than remove edges or modify features, and
prefer to connect nodes with dissimilar features.
Such perturbations would hurt the performance on
the test data. Therefore, pre-processing or purify-
ing the perturbed graph, and then learning from the
perturbed graph can enhance performance against
poisoning attacks.

Xu et al. [63] proposed different methods based
on the graph generation model, and used link pre-
diction as pre-processing to detect potential ma-
licious edges. Zhang et al. [64] focused on the
problem of detecting nodes which have been sub-
ject to topological perturbations calculated by the
Nettack [65]. Through observing the discrepancy
between the first-order proximity information of vi
and the neighbours of vi which created by Nettack,
they using a relatively simple threshold test find the
Nettack perturbations on GCN.

Similarly, in order to discard the high-rank per-
turbations generated by Nettack, Entezari et al. [66]
proposed the low-rank approximation and then re-
train GCN with the low-rank approximation matri-
ces(See Figure 9).

Except for the above mentioned, GraphSAC fil-
ters out sets contaminated by abnormal nodes based
on the graph-aware criterion calculated on a sub-
set of nodes randomly, the formula is given as be-

Figure 9: The overall system: low-rank approxima-
tion of graph structure and feature matrices to vac-
cinate the node classification method and discard
high-rank perturbations. (Image Credit: [66])

low [67]:

P̂ = f
(
{yn}n∈L ,A

)
, (7)

where yn are sample labels at random subsets of
nodes n ∈ L ⊂ V, A is the graph connectivity,
and P̂(n,c) ∈ [0, 1] can be denoted as the probabil-
ity that yn = c. The choice of f (·) is determined
by the specific features it wants to capture. Then,
GraphSAC compares the accuracy of f (·) using the
ratio of nodes in the consensus set to a prespecified
threshold T to judge it whether contain anomalies.

These models can only resist the attacks on
graph structure, but cannot resist the perturbations
on node features. As for the node features, attack-
ers prefer to add edges between dissimilar nodes.
Based on the findings, Xu et al. [68] utilized outlier
detection approaches to filter the adversarial edges.
Wu et al. [69] proposed to remove the edges whose
end nodes with small Jaccard similarity. The Jac-
card similarity score is defined as [70]:

Ju,v =
M11

M01 +M10 +M11
. (8)

where M11 represents the number of features where
both node u and node v have a value of 1. Similarly,
M10, M01, M00 represent the number of feature val-
ues of node u and node v, 1 and 0, 0 and 1, 0 and
0, respectively.

4.4. Attention mechanism

Different from pre-processing methods which try to
purify the perturbed graph data to enhance the
robustness of GNN models, attention-based mod-
els aim to improve the robustness of GNNs in the
presence of adversarial attacks. More specifically,
the attention mechanism is designed to assign high



confidence to the clean edges, and assigh low con-
fidence to the adversarial ones. When aggregating
the information from neighbors, the learned atten-
tion weights will penalize the perturbed part of data
by reducing their contributions during the propaga-
tion process.

RGCN [71] assumed that the prediction uncer-
tainty of adversarial nodes is high. As shown in fig-
ure 10, since the plain vectors cannot adapt to the
abnormal changes, RGCN proposes to model the
hidden representations of nodes in all graph con-
volutional layers as Gaussian distributions to auto-
matically reflect the effects of adversarial changes
in the variances. As a result, the variance-based at-
tention mechanism will penalize the nodes with high
variance to help mitigate the propagation of nega-
tive impact caused by adversarial examples. The
attention weights of node vj in layer l are defined
as

α
(l)
j = exp

(
−γσ

(l)
j

)
, (9)

where σ
(l)
j denotes the variance and γ is a hyper-

parameter.

Figure 10: The framework of RGCN. And the
GGCL represents the Gaussian-base graph convo-
lutional layer. (Image Credit: [71])

PA-GNN [72] introduces the supervised informa-
tion about real perturbations in a poisoned graph
to help improve the robustness of target GNN mod-
els. The intuition is from the fact that there usu-
ally exist clean graphs sharing the similar structural
distributions and node features with the poisoned
graph. For instance, co-review networks like Yelp
and Foursquare and social networks like Facebook
and Twitter both share similar domains. There-
fore, PA-GNN first learns to discriminate adversar-
ial edges generated by attacking the clean graphs
with supervised knowledge of known perturbations.
With supervision knowledge, PA-GNN designs a
loss function to guarantee less attention weights for
adversarial edges as

Ldist = −min

(
η, E

eij∈E\P
αl

ij − E
eij∈P

αl
ij

)
, (10)

Figure 11: Overall framework of PA-GNN.
Thicker arrows indicate higher attention coeffi-
cients. θ∗ denotes the model initialization from
meta-optimization. (Image Credit: [72])

where E and P represents the set of all edges
and that of perturbed edges, αl

ij denotes the self-
attention coefficient assigned for eij on the l-th
layer, η is a hyper-parameter to trade-off the mar-
gin between the expectations of two distributions.
Then, a meta-optimization algorithm is proposed to
learn the initialization of PA-GNN, and the model is
further fine-tuned on the poisoned graph to enhance
robustness.

4.5. Certifiable robustness

In most previous works, the robustness of GNNs
is exploited heuristically and experimentally. How-
ever, the criteria of measuring the safety of input
graphs under adversarial perturbation is not solved
in the previous works. Therefore, to research the
problem that how to verify that small perturba-
tions to input data will not cause dramatic effect
to a GNN is important.

Figure 12: Intuitive idea of the classification mar-
gin [44].

In [44], they try to derive an efficient principle
for robustness certificates. More specifically, they
want to provide a certificate to measure that for
which nodes the given trained GNN can guarantee
that the predictions will not change under any ad-



missible perturbations given a specific attack bud-
get (see Figure 13). To tackle this problem, they
aim to find the worst case margin (see Figure 12)
for the node t under some set Xq,Q(Ẋ) of admissible
perturbations to the node features:

mt (y∗, y) :=minX̃ f t
θ(X̃, Ȧ)y∗ − f t

θ(X̃, Ȧ)y (11)

s.t. X̃ ∈ Xq,Q(Ẋ), (12)

where y∗ denotes the class of node t given by the
ground truth or predicted and f t

θ(·) represents the
classifier which outputs the logits of each class. It
is easy to see that the GNN is certifiably robust
w.r.t node t when mt (y∗, y) > 0 for all y ̸= y∗,
which means that there do not exist any adversarial
examples that can change the prediction of node
t. Through some relaxations, they obtain a lower
bound of mt (y∗, y) which is tractable to calculate.
Thus, they can use this certificate to find how many
nodes in a graph is certifiably safe. Furthermore,
the certificate can be taken as the objective to help
more nodes safer through maximizing the worst case
margin.

However, Zügner et al. [44] only considers per-
turbations to the node features. Bojchevski et
al. [45] is completely orthogonal to [44], since they
only consider the adversarial perturbations to the
graph structure. This work derives the robustness
certificates for the models whose prediction is a lin-
ear PageRank function. Based on the observation,
under any admissible perturbation G̃ ∈ QF , the
work transforms robustness certificates to the worst-
case margin of node t between the class yt and the
class c as:

m∗
yt,c(t) = min

G̃∈QF

myt,c(t) (13)

= min
G̃∈QF

πG̃ (et)
T
(H:,yt

−H:,c) , (14)

Figure 13: Illustration of certifiable robustness on
graphs [44].

where H:,yt and H:,c denote the prediction logits
vectors of class yt and class c respectively. And
πG̃ (et) is the personalized PageRank vector of node
t. Then, in order to maximize the margin, they
aim to find the fragile edges to obtain a perturbed
graph G̃. As an extension of [45], Zügner et al. [73]
covers the highly important principle of graph con-
volutional networks. They rephrases the objective
function as a jointly constrained bilinear program
to make the optimization tractable.

Bojchevski et al. [74] proposes an approach that
can handle both the perturbations on graph struc-
ture and node features, which can be applied to any
GNNs utilizing randomized smoothing framework.
In this framework, the certificate is defined as:

ρx,x̃(p, y) = min
h∈H:

Pr(h(ϕ(x))=y)=p

Pr(h(ϕ(x̃)) = y), (15)

where x̃ is the neighboring point, ϕ is the random-
ization scheme, H is the set of classifiers w.r.t ϕ,
and h is a base classifier outputting a single predic-
tion class. Based on which, they define the data-
dependent sparsity-aware noise distribution:

Pr (ϕ(x)i ̸= xi) = pxi
− p

(1−xi)
+ , (16)

The randomization scheme ϕ would delete an ex-
isting edge with probability p−, and add a non-
existence edge with probability p+. Through the-
oretic analysis and further relaxation, they conduct
experiments to verify the effectiveness and efficiency
of their algorithm. This work also gives the cer-
tificates for graph-level classification models for the
first time. Except for the node classification and
graph classification tasks, there exist some works
concentrating on the certifiable robustness of some
other tasks, like community detection [75].

5. Future directions

We have thoroughly investigated robust models on
graphs and gained an overview of this emerging re-
search field, robust learning on graphs. However,
there still exist some promising research directions
that are less explored.

• Graph data. Compared with considerable
amount of work on static graphs, there still
remain problems on dynamic graphs, e.g.,
detecting anomalies on attributed dynamic
graphs, work with the trace of edge or node
updates. Besides, when it comes to an explicit
graph representation, to add or remove latent



edges may also be possible, that is, augmented
graphs, e.g., edges based on similarities or do-
main knowledge.

• Graph construction. The data does not form
a network or there is more than one network
available. To use graph-based techniques, how
to use the source of data to construct a best
representation, a graph or multi-graphs, re-
mains an open problem.

• Balance performance. Most methods focus on
anomaly detection performance while ignor-
ing adversarial robustness. How to balance
detection performance and the robustness of
models is still an open challenge.

• Evaluation. Ground truth data is often in-
existent and it is difficult for humans to
tell whether the adversarial perturbations on
graph data are imperceptible or not, thus to
find concise evaluation measure is urgent.

6. Conclusion

In the survey, we conduct an overall review on ro-
bust learning models on graphs. Specifically, we
present the recent developments of this area, we
first provide some robustness evaluation metrics of
model robustness on graphs, and then comprehen-
sively divide existing works of robust models on
graphs into five categories: anomaly detection, ad-
versarial training, pre-processing, attention mecha-
nism, and certifiable robustness. Besides, we fur-
ther emphasize some potential future directions in
learning robust models on graphs.

We hope that our work can serve as a reference
for researchers to get a systematical and compre-
hensive understanding of robust models on graph,
thus providing more insights for their studies.
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[73] D. Zügner and S. Günnemann, “Certifiable ro-
bustness of graph convolutional networks under
structure perturbations,” in Proceedings of the
26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1656–
1665, 2020.

[74] A. Bojchevski, J. Klicpera, and S. Günnemann,
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