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Abstract—Network data is mostly hard to obtain and error-prone. However, most existing works assume that the studied network

represents a perfect and complete picture of topological structure; nevertheless, it is rarely the case in real-world situations. Such

studies, performing downstream applications (e.g., vertex classification, link prediction, etc.) directly on original networks, will suffer

greatly due to the noise and deteriorate the application performance. In this paper, we propose NetRL, a novel method for network

denoising, that works by creating missing edges and removing incorrect edges from a noisy network, thereby improving its quality and

representative power. In particular, NetRL turns the problem of network denoising into edge sequences generation, which can be

formulated as a Markov Decision Process. By doing this, NetRL takes the complex long-term dependency between edge creations into

consideration, i.e., the existence of an edge depends on which edges have been generated so far. It further takes advantage of

downstream task to guide the network denoising process, by providing a deep reinforcement learning framework to conduct direct

optimization on this task-specific objective. As a result, NetRL ensures that the denoised network not only satisfies the topological

property of the original network, but also improves the performance of the downstream application. Experimental results on real-world

networks show that, comparing with several baseline methods, NetRL can denoise networks effectively with better performance for

vertex classification. Meanwhile, NetRL can better preserve original network’s properties (e.g., degree distribution and clustering

coefficient. Our implementation is available at: https://github.com/galina0217/NetRL.

Index Terms—Network denoising, reinforcement learning

Ç

1 INTRODUCTION

Anetwork is a widely used data structure for describing
and modeling complex systems, such as social net-

works, biochemical networks, information networks, etc.
There has been an explosion of empirical studies over the
years focusing on network data.

One fundamental issue is that network data is hard to
obtain and error-prone in reality. Most previous studies
have assumed that the obtained network represents a per-
fect and complete picture of the vertices and edges.

However, most real data only depicts an imperfect picture
of network structure, which may be blamed on experimental
error, incomplete sampling, human subjectivity of some kind.
For example, to conduct a mobile network from call logs of
users, the question of how to define the threshold number of

calls for creating edges can be a tricky one, which brings us
significant noise. If we then directly conduct downstream
tasks, such as vertex classification or link prediction based on
noisy networks, this will further deteriorate the downstream
task performance [40]. Nevertheless, many studies continue
to draw potentially misleading conclusions from flawed net-
work data. Inaccurate representation of networks poses a seri-
ous challenge to network analysis; accordingly it is necessary
to obtain a clean network from the noisy network. Generally
speaking, the noise in the graph structure can be caused by
noisy links and noisy nodes; we aim to solve the noisy link
problem in this paper.

Given a noisy network, in this paper, we study a novel
method of denoising the network that provides better repre-
sentation of the underlying topological information, thus
contributes to downstream applications. In practice, the ver-
tex set of a network is easier to determine and contains less
noise than the edge set. Moreover, if a vertex is an anoma-
lous one, it can be isolated by removing all the edges con-
nected with it. We therefore let the denoised network has
the same vertices as the original network, but with a new
set of edges. The denoised network is expected to 1) pre-
serve and even better represent the underlying topological
information of the original network; and 2) contribute to
downstream applications. However, it is nontrivial and
remains several challenges.

A straight-forward idea is to formulate the network
denoising problem as link prediction, however, it ignores
the complex non-local, long-term dependency between the
creations of edges. Take an example to illustrate the neces-
sity of this dependence in Fig. 1a, where a noisy network is
given. The creations of the missing edges ðB;CÞ and ðB;DÞ
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depend on each other: the existence of edge ðB;DÞ will pro-
vide one more common neighbor to B and C, which
increases the likelihood of edge ðB;CÞ. Network properties
such as connectivity or scale-free property [27] ensure that
the long-term dependency will exist even for those edges
that are separated far away from each other. How to capture
and model the non-local, long-term dependency between
the existences of edges is the first challenge in this task.

Second, another example in Fig. 1a: H and G share simi-
lar personal features, the incorrect edge ðH;GÞ is difficult to
detect. Taking recommendation system as our downstream
application, intuitively, we will create the edge if it brings
the correct information to reveal the similar product inter-
ests of H and G, and further improves the recommendation
performance. Conversely, edges that decrease the perfor-
mance are more likely to be noisy. This idea leads us to con-
sider utilizing the feedback from downstream applications
to guide the denoising process. However, the feedback from
the downstream application can be obtained only when we
have obtained the denoised network, which is typically
delayed and leads to the second challenge.

The third challenge is caused by the lack of supervised
information available for noisy edges, which limits the feasi-
bility of traditional machine learning technologies.

To deal with the above challenges, in this paper, we pro-
pose a novel model to denoise networks. We name our
model NetRL, i.e., Network Denoising via Reinforcement
Learning. To be specific, we formulate the problem of net-
work denoising as edge sequence generation over the net-
work, i.e., learning to generate sequences of edges that are
plausible in a clean network, which can be further formu-
lated as a Markov Decision Process [2]. We then put the
edge generation into a reinforcement learning framework
[24]. NetRL plays the role of an RL agent that operates
within a task-aware network denoising environment. It
selects the best action of the next vertex to be connected,
and is trained via Double DQN [30] to optimize reward. A
new denoised network is successively constructed by con-
nected vertices. Fig. 1 shows the general structure of our
framework. It illustrates how the network denoising process

and the downstream task interact with each other and
evolve together.

There are several advantages to our approach: First,
instead of directly generating edges by computing the simi-
larity of pairwise vertices or based on domain knowledge,
our RL agent will take the best action conditioned on the
edges that have been generated so far, thus is capable of
handling long-term, non-local dependency. Second, our
method is task-driven which naturally utilizes the informa-
tion provided by downstream tasks. Meanwhile, the rein-
forcement learning method naturally provides a way to
utilize the feedback from the downstream application by
formulating a delayed reward. Third, the denoising process
can be learned through trial-and-error search, attempting to
produce a strong preference for a more optimized path and
obtain feedback from rewards or punishments on a given
noisy network and downstream task, and therefore does
not require supervised information about which edges
are noisy.

We summarize our contributions in this paper as follows:

� We formulate the problem of network denoising
from the original noisy network to improve its qual-
ity and further optimize the downstream task.

� We propose a novel and expressive method, NetRL,
which adopts a deep reinforcement learning frame-
work for network denoising and allows direct
optimization of task-specific objectives. We further
propose a Diversified Experience Replay mechanism to
ensure the RL agent can learn efficiently from more
diverse transitions and take fully advantage of the
delayed reward.

� Extensive experimental results show that NetRL is
widely applicable for denoising multiple types of
networks by exhibiting competitive results on down-
stream tasks, while still preserving important prop-
erties of the original network. We also present a case
of extending NetRL to the network generation sce-
nario, which aims to generate all edges only accord-
ing to vertex features.

Fig. 1. Illustration of the network denoising problem and our deep reinforcement learning framework. Fig. 1a shows a noisy network where each ver-
tex indicates a user and edges represent social relations (e.g., friendship) between individuals. We have two features for each user, namely sex (F/
M) and age respectively. In the network, there are two missing edges (B, C) and (B, D), and an incorrect edge (G, H). Fig. 1b presents the proposed
network denoising process via a deep reinforcement learning framework, where multiple edge sequences are generated and form a clean network,
as shown in Fig. 1c. In Fig. 1d, the denoised network is then employed to carry out a downstream task such as vertex classification, the performance
of which will in turn influence the network denoising process.
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2 PROBLEM DEFINITION

Before introducing our method, we provide the necessary
definitions and formulate the problem in this section. The
major notations used in our proposed model can be found
in Table 1.

Formally, let G ¼ ðV;X;EÞ be an undirected network we
aim to study in this paper, where V ¼ fv1; . . . ; vNg denotes
the set of vertices in the network (with jV j ¼ N), XN�M rep-
resenting the feature matrix, and E ¼ feijjvi; vj 2 V g indi-
cates the set of edges. Each vertex is assigned M features,
where each element xim 2 X indicates themth feature of vi.

In practice, we often obtain G by sampling from a com-
plete network or by following certain rules. Either, it is inev-
itable that Gwill contain noisy information, especially at the
edge level, as it is easier to give a certain vertex set in most
cases. In this paper, we focus on studying networks with
noise for edge-existence and leave vertex-level denoising as
future work. That is, given G, there are some incorrect edges
that should not exist in E, while a few meaningful and cor-
rect edges are missing in E. Thus, it is necessary to study
how to denoise the original network G, which can be for-
mally formulated as the problem of network denoising in
the following way:

Definition 1 Network Denoising. Given a noisy network
G ¼ ðV;X;EÞ, the goal of network denoising is to construct a
clean network G� ¼ ðV;X;E�Þ by removing incorrect edges
from E and creating meaningful edges for E�. The denoised
network G� is expected to provide a better representation of the
connections between vertices than the original network G.
Meanwhile, G� can contribute to the downstream applications.

In this paper, we take vertex classification as the example
of downstream application. Our goal is to feed the denoised
network to a classifier (GCN as an example) , and obtain a
better performance comparing with that based on the origi-
nal network.

3 OUR APPROACH

3.1 General Description

We first introduce our general idea and the overall structure
of our method. Given a noisy network G ¼ ðV;X;EÞ, we
generate a set of new edges E� that forms a clean network
G� ¼ ðV;X;E�Þ. To effectively generate E�, we propose a
deep reinforcement learning framework, where an RL agent
takes the duty of creating edges.

In particular, our agent starts from a randomly selected
vertex vi, and constructs a sequence l ¼ ðviÞ. At the next
time, the agent takes an action to select a vertex vj to be con-
nected to vi, then an edge is created between vi and vj, and
vj is added to the sequence, i.e., l ¼ ðvi; vjÞ. We call l as gen-
erated edge sequence (edge sequence for short) as the agent
has created edges between adjacent elements (vertices) in l.
Notice that by this way, l is actually a path in our denoised
network G�. It stops extending the current l and start to gen-
erate another edge sequence when the length of l reaches jLj
or a closure is formed (i.e., a vertex has been selected twice).
The agent finishes the whole edge generation process when
the total number of edges satisfies our setting. We define
S ¼ fl1; . . . ; ljSjg as the set of edge sequences. In turn, for the
denoised network, we add the edge e�ij to E� iff vi and vj,

TABLE 1
Description of Some Major Notations

Notation Description

G, G� The input noisy network and the denoised network
V , vi The set of vertex and the vertex i
E, E�, eij The edge set of input noisy network, the edge set of denoised network and the edge ði; jÞ
X, xi , xim The feature matrix, the feature vertor of vertex vi and the m-th feature of vertex vi
A,D The adjacency matrix and the diagonal degree matrix

S, l, li The edge sequence set, an edge sequence and the ith vertex in an edge sequence
fi The topological representation of vertex vi in the input network
pt The representation of edge sequence at time t
st, at, rt The state, the action and the reward at time t
D The reply memory
rt The changeable capacity ratio of Diversified Experience Reply

jSj The maximum number of edge sequences
N The number of vertices
M The number of features of vertex
F The topological embedding size of vertex
T The time window length
jLj The maximum length of an edge sequence
K The action candidate pool size
C The target network update period

c The trade-off between the immediate reward and the delay reward
b The trade-off between riot and riht

B, b The number of hidden layers of GCN and the bth hdden layer of GCN
yi The label of vertex vi
Y , Yl The training labels and the vertex index in the training set
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regardless of their order, appear adjacently in at least one
sequence in S.

In the above edge sequence generation process, we start
the edge sequence from a randomly selected vertex. The
reasons are as follows. First, in the initial stage of reinforce-
ment learning, the RL algorithm has not learned well, thus
an edge sequence is more like a random walk on the graph.
Considering that a random walk converges to a stationary
distribution,which is independent of the starting vertex, we
directly choose a random vertex to start. Second, in order to
have more chance for RL agent to explore when the RL algo-
rithm has learned very well, we choose a randomly selected
vertex to start, hopefully covering more global structure
and leading to long-term benefit.

To illustrate the detailed design of our RL agent, we next
introduce the state, action and reward representation.

� State. The state st in our framework is a general
description of the edges that have been generated so
far. It is composed of the features and topological
information of the current vertex, along with the
topological information of every vertex in the current
edge sequence l. For a particular vertex vi, its vertex
feature (e.g., age, gender, occupation, etc.) is given
by xi; we also use network embedding technologies
such as DeepWalk [7] to obtain a representation fi 2
R1�F of vi’s topological information. Notice that if
vertex features can not be obtained, we will only use
the topological information as state representation. It
is also worth to mention that fi contains noisy infor-
mation to a certain extent. However, in practice, the
overall structure of the noisy network is still reliable.
Therefore, we believe that fi can still help in our
task. See detailed formulation of st in Section 3.2.

� Action.Action at is defined to indicate which vertex v is
to be added to the current edge sequence l. After taking
an action, the edge sequence lwill be updated by ðl; vÞ.

� Reward. Reward rt is used as feedback to guide the
whole denoising process. It is composed of two parts:
reward from original network and reward from

downstream application. We call the former the
immediate reward, as it can be captured immediately,
while the latter is termed the delayed reward as the
downstream application can only be conducted after
completing the network denoising process. These
two rewards together ensure that our denoised net-
work will preserve and even better represent the
topological information of the original network, and
further benefit the downstream application. See
details in Section 3.3.

3.2 Q-Network Structure

Given the current state st, the agent aims to find the action
at (which vertex to add) that may lead to the maximum
reward in the long run, following the Bellman Equation
[24]. It is thus essential to estimate the long-run reward
based on a particular state-action pair. To do this, we
employ a Q-network to approximate the action-value func-
tion Qðst; atÞ.

In general, we construct a deep neural network as the Q-
network. Fig. 2 presents the overall structure of our deep Q-
network, which takes state st and action at as input to learn
the mapping from the generated edges to potential rewards.
One challenge here is that, since the vertices in the network
are numerous, the state space and the action space are
extremely large. To handle this issue, we encode state and
action into a continuous low-dimensional space.

We represent the state st at time t as a continuous real-
valued vector, which encodes the following information: 1)
The rich information of the current vertex, including the
vertex’s topological representation and features; 2) The
sequential information from the generated edge sequence.
Since the generated edge sequence is very long in most
cases, directly concatenating the information of each vertex
in the sequence would cost many computation resources.
We thus utilize pooling to obtain a summarized version of
all vertices in the generated edge sequence. Considering
that both the smoothed information (e.g., the edge sequence
forms a circle) and the sharp information (e.g., a certain

Fig. 2. The structure of the Q-network in our framework. The representation of state is composed of feature, embedding and edge sequence, while
the representation of action is composed of feature and embedding. To be specific, feature captures node attributes, and embedding captures net-
work properties, which varies with different network in practice.
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vertex is a hub vertex) of vertices in the sequence are impor-
tant, we utilize both mean pooling and max pooling to sum-
marize the generated edge sequence. We first use a vector pt
to define the representation of an edge sequence
ðvlt�T

; . . . ; vltÞ, where li indicates the index of the ith vertex
in the edge sequence as

pt ¼ max-pooling flt�T
; . . . ; flt

� �
;

�
mean-pooling flt�T

; . . . ; flt
� ��

;
(1)

where the time window length T denotes the maximal view
range that can be observed by the RL agent, and fi is the
topological representation vector of vi, obtained by some
network embedding algorithm. We conduct max-pooling
and mean-pooling on the representation vectors of the cur-
rent edge sequence flt�T

; . . . ; flt
� � 2 RT�F to reduce the spa-

tial dimension and simplify the model complexity.
Intuitively and empirically, the last vertex vlt in the edge

sequence will be more important than the others, as it
directly influences the next vertex to be added into the edge
sequence. Therefore, we encode the state st as the vector,
which is concatenated by the feature vector xlt of vlt , the
topological representation vector flt of vlt , and the represen-
tation of other vertices in the edge sequence (i.e., pt�1), as
follows:

st ¼ xlt ; flt ; pt�1

� �
: (2)

At the beginning (t ¼ 0), the agent starts with an edge
sequence with only one randomly selected vertex.

As for the action at, by assuming the selected vertex is vi,
we use the feature vector xi and the topological representa-
tion vector fi of vertex vi to encode at as

at ¼ xi; fi½ �: (3)

In addition, to reduce computational complexity and
improve model efficiency, we construct an action candidate
pool for each vertex vj. When vj becomes the last vertex in
the current edge sequence, we only consider adding the top
K nearest vertices to vj in the topological embedding space.
In other words, vi will be considered to be added after vj
only when their topological representation vectors, i.e., fi
and fj, are close enough. It is easy to see that when making
an action, the computational complexity would reduce from
OðNÞ to OðKÞ (K � N). This special design can also be
interpreted as a certain constraint that makes the newly cre-
ated edges not too far from the original network.

The Q-network maps the vector representation of the
current vertex, the vertices traversed before, and the next
vertex to be reached as inputs to the neural network shown
in Fig. 2, which outputs a single neuron approximating
Qðst; atÞ

Qðst; atÞ ¼ fu st; at½ �ð Þ; (4)

where ;½ � denotes vector concatenation, and fuð�Þ is a fully
connected neural network with model parameter u.

3.3 Reward Computation

Wedefine two types of rewards: immediate reward rimmed
t and

delayed reward rdelayt , to indicate the utility of the denoised
network and guide the training process of the Q-network.
During the training process, we define a terminal state in our
framework, which will be triggered when the agent goes
through a given length of decision sequence. Therefore, the
agent will receive a delayed reward at the terminal state, and
will receive an immediate reward at other states. We then
introduce our elaborate design for these two rewards.

Immediate Reward. The inspirations for immediate reward
are two fold: 1) the denoised network should preserve the
topological information of the original network; 2) as net-
work homophily suggests, vertices with similar attributes
are more likely to be connected. Therefore, we define the
immediate reward rimmed

t composed of two parts: riot ,
obtained from the first motivation, and riht , calculated
according to the second motivation

rimmed
t ¼ b � riot þ ð1� bÞ � riht ; (5)

where hyper-parameter b regulates a trade-off between riot
and riht .

For the first term, riot is computed to capture the major
topological structure of the original network. Assuming
that the last vertex of the current edge sequence l is vi, and
the next vertex to be added into the edge sequence is vj, we
give a positive reward if the newly created edge eij exists in
the original network. Moreover, to avoid creating dupli-
cated edges in the edge sequence, we do not give the posi-
tive reward if the vertex pair ðvi; vjÞ or ðvj; viÞ exists in the
current edge sequence. Putting things together, riot is
defined as

riot ¼ �1; eij =2 E _ ðvi; vjÞ 2 l _ ðvj; viÞ 2 l
1; otherwise

�
: (6)

For the second term, vertex preference is a phenomenon
of homophily in network science, which speeds up the
information diffusion process and is useful for improving
network quality. In our work, we use vertex labels to repre-
sent this kind of information. To be specific, we have

riht ¼
0; yi ¼ ? _ yj ¼ ?
�1; yi 6¼ yj ^ yi 6¼ ? ^ yj 6¼ ?
1; otherwise

8<
: ; (7)

where yi denotes the label of vi, yi ¼ ? if the label is missing
in the training data. Here, we assume that 20 percent labels
are missing in all datasets to simulate the actual condition.

Delayed Reward. The delayed reward rdelayt indicates how
the denoised network contributes to the downstream appli-
cation, which is estimated by a classifier or task-specific
machine learning model. As an example, we utilize GCN as
the classifier on the vertex classification task for illustration
(when conducting other tasks, we can apply other task-spe-
cific models in a similar way). Formally, we define

rdelayt ¼ ½scoreðH Bð Þ
t ðA�

t ; XÞ; Y Þ
�scoreðH Bð Þ

t ðAori; XÞ; Y Þ� � c
(8)
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H
bþ1ð Þ
t ðA;XÞ ¼ f ~Dt

�1
2 ~A ~Dt

�1
2H

ðbÞ
t W

ðbÞ
t

	 

; (9)

where A�
t is the adjacency matrix of the denoised network;

Aori is the adjacency matrix of the original network; X is the
vertex feature matrix; Y is the training labels; H

ðbÞ
t is the bth

hidden layer of a deep classifier (see details later), which
can be implemented by many ways; H

ðBÞ
t is thus the pre-

dicted label; score is the evaluation measure (f1 score in our
setting), indicating how well the predicted labels fit the
ground truth; c is a constant, in order to change the magni-
tude of task-specific feedback, which can be treated as a
trade-off between delayed reward and immediate reward.

In this paper, we take Graph Convolutional Network
(GCN) [25] as an example of our classifier Ht, a state-of-the-
art technique that can achieve high performance in vertex
classification. In particular, GCN directly encodes the net-
work structure using a neural network, builds the mapping
between the given network and vertex labels, and is trained
in a supervised way based on a set of training labels. In
Eq. (9), ~A ¼ Aþ I is the adjacency matrix and I is the iden-
tity matrix; ~Dtii ¼

P
j
~Aij; W

ðbÞ
t is a trainable weight matrix

of the bth layer. fð�Þ denotes the activation function. H
ðbÞ
t is

the representation of the bth layer, and we define that H0
t ¼

X. Here, we apply a B layers GCN to A
S

X to predict the
final vertex labelsH

Bð Þ
t ðA;XÞ.

3.4 Model Learning

Learning Process. In our method, the GCN classifier provides
a mechanism for computing the delayed reward of the
denoised network. We aim to maximize the expected total
reward, i.e, minimize the cross-entropy error described
below:

LGCN ¼ �
X
i2Yl

Yi lnH
ðBÞ
ti ; (10)

where Yl is the set of node indexes in training set, Yi and
H

ðBÞ
ti are the true label and the predicted label of vi respec-

tively. Here, we apply gradient descent to optimize the
GCN algorithm.

Once we obtain a high-value delayed reward, the agent
will learn more from it. Meanwhile, once the agent chooses
high-quality actions according to Qðs; aÞ, this will also lead
to better performance in GCN. We apply Double DQN [30]
to train our RL framework (In earlier experiments we also
tried some policy optimization methods, but found Double
DQN works more stable). We hope that the Q-network can
fit the total reward well in order to estimate the utility of
each decision, which raises the problem of minimizing the
mean-squared error in Q-values

LRL uð Þ ¼
E

ðs;a;r;s0Þ	D
½ðrþ gQðsjþ1; argmaxa0Qðsjþ1; a

0; u-ÞÞ

�Qðs; a; uÞÞ2�;
(11)

where g is the discount factor. Here, we apply adaptive
moment estimation (Adam) to optimize this objective. In
order to maintain a stable update, we take advantage of a
target Q-network, parameterized as u-, and an original Q-
network, parameterized as u. The parameters in the target

Q-network are updated far more slowly than the original
ones, which can only be replaced u- ! u periodically.

Algorithm 1. The NetRL Algorithm

Input: Episode number episodes. The maximal length of edge
sequence jLj. Target network update period C. The greedy
coefficient ". Learning rate a. Q-network with parameters u.
1: Initialize current step number: step ¼ 0
2: Initialize the target network: u- ¼ u

3: repeat
4: Randomly select a vertex vl0 ;
5: Initialize state st ¼ ðxl0 ; fl0 ; p0Þ;
6: for t ¼ 0 to jLj do
7: With probability " select a random action at;
8: Otherwise select at ¼ argmaxaQ

�ðst; a; uÞ;
9: Execute action at in emulator and observe immediate

reward rimmed
t according to Eq. (5) and next state stþ1;

10: Set terminal ¼ 0;
11: Store transition st; at; r

immed
t ; stþ1; terminal

� �
in Dimmed;

12: if t ¼¼ jLj then
13: Reconstruct denoised network A�

t via L.
14: Compute delayed reward rdelayt according to Eq. (8) by

GCN;
15: Set terminal ¼ 1;
16: Store transition st; at; r

delay
t ; stþ1; terminal

	 

in Ddelay;

17: end if
18: step ¼ stepþ 1
19: Sample minibatch of transitions sj; aj; rj; sjþ1; terminal

� �
from Dimmed and Ddelay with capacity ratio rt according
to Eq. (12);

20: Y j ¼ rj þ ð1� terminalÞ � gQðsjþ1; argmaxa0Qðsjþ1; a
0; u-ÞÞ;

21: Update u ¼ u � a � ru Y j �Qðsj; aj; uÞ
� �2

;
22: if step ðmod CÞ ¼¼ 0 then
23: Set u- ¼ u;
24: end if
25: end for
26: until episodes finish

Diversified Experience Replay. Considering the sparsity of
delayed reward and the training efficiency of our model, we
are motivated to improve the experience replay mechanism.
Experience replay [29] proposed in DQN [26] enables Q-net-
works update parameters through the recent experiences
stored in a replay memory, which in turn stabilize the train-
ing process. However, there are two issues to be solved: 1)
When the training process is relatively stable, there are
always some specific state-action pairs with large Q-values.
As a result, many repeated and redundant experiences are
stored in replay memory. The transitions sampled from the
replay memory are lack of diversity, which will make the
training process less efficient, and more likely to be trapped
in local optimum. For example, some edges with large Q-
values are more likely to be repeatedly generated, which
may lead to a sparse denoised network with few edges; or,
some vertices will always be selected, which may lead to a
large-degree vertex. 2) The delayed reward is much sparser
than the immediate reward. Thus, we divide the whole
replay memory D into two replay memories Dimmed and
Ddelay with different capacities. However, the ratio between
Dimmed and Ddelay is hard to define. In the early training
stage, transitions sampled from Ddelay is redundant due to
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its sparsity, learning too much from the delayed reward will
lead to unstable and inefficient training process. In the later
training stage, learning too little from the delayed reward
will make the RL agent short-sighted.

Here, we propose a new Diversified Experience Replay
mechanism to ensure the RL agent learn efficiently from
more diverse transitions and take fully advantage of the
delayed reward. The mechanism of diversified experience
transitions enhances the ability of global convergence and
also greatly reduces training time. To deal with the first
issue, we first extract the unrepeated transitions, and then
conduct uniform sampling among them; if the number of
unrepeated samples do not meet the required sample size,
the rest will be sampled from the replay memory. To deal
with the second issue, we define a changeable capacity ratio
rt between Dimmed and Ddelay at time t

rt ¼ max rmin; z
step=sdr0

	 

; (12)

where rmin constrains the minimal value of r; r0 is the initial
value of r, which is set to a relatively large value as immedi-
ate reward is more important in early stage of training; z 2
ð0; 1Þ is the decay rate; step is the current step number; and
sd is the decay step.

The proposed NetRL algorithm is presented in Algo-
rithm 1. In the NetRL algorithm, the time complexity mainly
comes from line 8, 14 and 20. According to [36], a basic GCN
takes Oð Vj jMÞ ’ Oð Vj jÞ (line 14) as we have M � Vj j or a
sparse feature matrix X in practice (Note that for message
passing-based GCNs, the update equation only depends on
the neighborhood of a specific node, and independent of
graph size, making the complexity Oð Ej jÞ reducing to
Oð Vj jÞ for sparse graphs). When applying MLP to compute
the Q-value of each (state, action) pair for K Lj j times in
each episode, it would take O K Lj j M þ F þ Tð Þð Þ ’
O K Lj jð Þ (line 8 and line 20) as we have ðM þ F þ T Þ �
K Lj j in practice. Thus, the overall time complexity of NetRL
algorithm is OðK Lj j þ Vj jÞ.

4 EXPERIMENTS

4.1 Experimental Setup

In the experiments, we aim to conduct two downstream
tasks, i.e., vertex classification and social tie prediction task.
Vertex classification is the most common task, and its goal
is to determine the label of a vertex. The problem of social
tie prediction can be formulated below. Given a social net-
work and a particular edge in the network, we aim to deter-
mine if the edge is a strong tie or a weak tie.

Datasets. We use seven different networks, which can be
categorized into:

� Mobile network. We aim to conduct two practical
tasks (i.e., fraud detection and social tie prediction)
on mobile networks. Two real-world mobile net-
works, i.e., FinV and Telecom, are utilized.

1) FinV is a dataset provided by FinVolution
Group1 [41]. If two registered users have made a

phone call, we create a link between them. For each
user, we obtain their demographic information
(including age, sex, birthplace, educational level,
marital status, work type and so on) as user attrib-
utes. For each phone call log, we can obtain its start-
ing time and its ending time. We fortunately have
some loan records and accordingly define a user
who has 90 days overdue repayment as a fraudster.
We label 2,140 fraudsters among 11,410 users who
have at least one loan history record. We also have
the call duration of each edge and accordingly define
a call lasts greater than 1 minutes as a strong tie, oth-
erwise it is a weak tie, thus 4,151 strong ties are iden-
tified.

2) Telecom is a dataset provided by China Tele-
com,2 which is formed in a similar way as FinV. We
label a user as the fraudster if he/she was reported
as a fraudster by someone either to Baidu3 or Qihoo
360.4 These ground truth data comes from a large
number of complaints and therefore has a very high
confidence. In this way, we obtain 1,4361 fraudsters
among all the users. Besides, among 1,575,498 edges,
we identify 605,203 strong ties whose call duration is
greater than 1 minutes.

Notably, these two datasets contain noise to some
extent. For example the links built upon the calls
misdialed are most likely to be noisy links, as they
do not represent the actual ”social” relationships.

� Social network. BlogCatalog and Flickr, two bench-
mark social networks. Vertices represent users and
edges represent social relations. All the vertices are
divided by user interests into different categories.
The vertices of BlogCatalog can be classified into 6
categories and that of Flickr fall into 9 categories.
Regarding the node features, we conduct SVD
decomposition on them to reduce dimension as [32]
does. Because these two datasets are extracted from
social media, they contain noise to some extent.

� Academic. Cora and Citeseer, two benchmark citation
networks. Vertices are documents and edges are cita-
tion links between documents. Each vertex has a
human-annotated topic as a class label as well as a
feature vector, which is a sparse bag-of-words repre-
sentation of the document. The vertices of Cora fall
into 7 classes and that of Citeseer are divided into 6
categories. Since the feature dimension of Citeseer is
too large, which may slow down the training pro-
cess. Hence, we construct a TFIDF matrix for Cite-
seer and conduct SVD decomposition to reduce its
dimension as [32] does.

� Web. Wiki, a web network. Each Wikipedia docu-
ment represents a vertex and the connection between
them forms an edge. Each vertex has substantial text
information as its features in the form of TFIDF and
are divided into 6 categories. We remove the

1. FinVolution Group, the first and one of the online lending plat-
forms in China.

2. China Telecom, one of the world’s largest providers of integrated
telecommunication services.

3. http://www.baidu.com, one of the largest Internet companies in
the world.

4. http://www.360.com, a Chinese internet security company.
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documents whose category ratio is less than 5 per-
cent to balance the dataset. We also conduct SVD
decomposition on node features to reduce dimension
as [32] does.

Dataset statistics are summarized in Table 2.
Baselines. When conducting the vertex classification task,

we compare our approach with the following baselines: 1)
Label Propagation (LP) [3]. ParWalks [3], a label propagation
method via partially absorbing random walk, is applied. 2)
GCN [25]. Semi-supervised node classification with GCN.
GCN and LP are conducted on the original network, which
do not denoise at all. 3) NetGAN [13]. A graph generation
model, also constructs networks through random walks.
We conduct GCN [25] on the constructed network by Net-
GAN; 4) GraphGAN [33]. The generator in this work can be
treated as a graph generation model, which fits the underly-
ing true connectivity distribution. We conduct GCN [25] on
the generated network by GraphGAN; 5) NE [31].The most
related work in network denoising, which optimizes the
adjacency matrix end-to-end. We conduct GCN [25] on the
denoised network by NE. 6) NetD [37].A network denoising
method, by which the denoised network is generated by
removing unimportant connections as noise. We then per-
form GCN [25] on the denoised network by NetD.

When conducting the social tie prediction task, the classi-
fier GCN [25] can not handle link-level tasks well, thus we
utilize the variational graph auto-encoder (GAE) [11], a
model that can achieve good performance in link-level
tasks, as the running example of our downstream task
classifier.

Implementation Details. Here, we provide detailed imple-
mentation details of our experiments. In the training phase,
we set the maximal length of each edge sequence jLj as 100

when generating the edge sequences. The time window
length T considered in Eq. (1) is set as 10 when constructing
Q-Network.We choose the embedding size of DeepWalkF as
64, the action candidate pool size K as 100. When computing
the reward, the immediate reward parameter b that regulates
a trade-off between rint and riht is set to be 0.7 and the constant
c that controls the magnitude of delayed reward is set to be
the same value as jLj. The replay memory size of the delayed
reward is set to be 500. Regarding the replay memory size of
the delayed reward, the minimal value rmin, the initial value
r0, the decay rate z and the decay step sd of the changeable
capacity ratio are 100, 150, 0.3 and 2, respectively. The dis-
count factor g in Objective (11) is 0.5, the target network
update period C is 4, and the greedy coefficient " decays
according to "tþ1 ¼ "t

tm ; "0 ¼ 1, where m denotes its decay rate
that is set to 3e-6. The feature dimension obtained from SVD
composition for Citeseer and Wiki is set to be 200. For GCN
and GAE, the parameters are set to their default values. For
theQ-network,weuse a one layerMLP, andReLU for the acti-
vation function of hidden layers, where theweights are initial-
ized by Xavier. Pooling operations reduce the dimension of
edge sequence into 4. During training the Q-network, we use
a batch size of 64 and train it using the Adam optimizer. The
learning rate a is set to be 1e-4. In the inference phase, we gen-
erate an edge sequence for each node (i.e., jSj ¼ N) and set
the maximal length of each edge sequence jLj as 3. Other
parameters are the same as that in the training phase.

Our model is implemented in Tensorflow version 1.14.0
with CUDA version 9.0 and Python 3.5.2. All the experi-
ments are conducted on a single machine with an Intel
Xeon E5 (252GB memory) and a NVIDIA TITAN GPU
(12GB memory). When conducting the vertex classification
task, we use 10 percent of all the labels as train data and the
remaining 90 percent for testing. When conducting the
social tie prediction task, we allocate 90 percent of all the
labels for training and 10 percent for testing. The reported
results are averaged over 10 runs with random dataset split
and random weight initializations. Our implementation is
available at: https://github.com/galina0217/NetRL.

4.2 Comparison Results

Table 3 lists vertex classification performance on several noisy
networks (i.e., FinV, Telecom, BlogCatalog and Flickr), and
we can see that NetRL performs consistently best on different
datasets (+26.1% in terms of f1). Comparedwith LP andGCN,

TABLE 3
Experimental Results on Vertex Classification, Where Precision, Recall and f1 for the Binary Classification is Given on FinV and Tel-

ecom, and Macro Precision, Macro Recall and Macro f1 for Multi-Class Classification is Given on Other Datasets

FinV Telecom BlogCatalog Flickr

Prec. Rec. F1. Prec. Rec. F1. Prec. Rec. F1. Prec. Rec. F1.

LP 0.1432 0.1345 0.1274 0.4950 0.4988 0.4926 0.4334 0.5202 0.4009 0.3473 0.3754 0.3327
GCN 0.1848 0.1879 0.1861 0.8587 0.5921 0.6390 0.7251 0.6934 0.6885 0.5632 0.5033 0.4746
NetGAN 0.1548 0.1432 0.1442 - - - 0.2546 0.2264 0.1444 0.2718 0.2387 0.2100
GraphGAN 0.1909 0.1160 0.1496 - - - 0.6403 0.4694 0.4678 0.6034 0.4856 0.4917
NE 0.2149 0.1837 0.1993 - - - 0.7333 0.7305 0.7303 0.4346 0.4383 0.4318
NetD 0.1920 0.1701 0.1804 0.8450 0.5400 0.5612 0.7234 0.7063 0.6976 0.5580 0.4980 0.4691
NetRL 0.3932 0.2541 0.3087 0.9004 0.7041 0.7669 0.8410 0.8409 0.8400 0.5649 0.5750 0.5620

TABLE 2
Dataset Statistics

Dataset Type #Vertices #Edges #Features

FinV Mobile network 11,410 12,262 102
Telecom Mobile network 290,483 1,575,498 261
BlogCatalog Social network 5,196 171,743 8189
Flickr Social network 7,575 239,738 12,047
Cora Citation network 2,708 5,429 1,433
Citeseer Citation network 3,327 4,732 3,703
Wiki Web network 1,803 8,915 4,973
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ours performance gain is correlated with the help of the net-
work denoising process. Compared with two generation
models NetGAN and GraphGAN, ours is able to capture the
long-term dependence between edges, while NetGAN and
GraphGAN create edges without considering the edges that
have already been generated. The Comparison with NE, the
most related work on network denoising, suggests the utility
of downstream task guidance. In addition, benefiting from
the exploration mechanism of reinforcement learning, NetRL
avoids the overfitting issue. Notice that the methods con-
ducted on the generated or denoised network (i.e., NetGAN,
GraphGAN, NE) sometimes performworse than themethods
conducted on the original network (i.e., LP, GCN), which sug-
gests that it is better not to denoise if the denoised networks
do not contribute to the downstream task, since network
denoising is a non-trivial task.

We further evaluate our method on the social tie predic-
tion task on FinV and Telecom dataset. Note that this task
requires labels on links, therefore Cora and other bench-
marks without such information are not considered. GAE
[11] is taken as the downstream task classifier when predict-
ing social ties. Table 4 reports the AUC of all the comparable
models except NE, because NE results in a dense matrix
which can not be directly applied to the link prediction task.
We can see that NetRL still outperforms other methods,
which demonstrates that our method can actually benefit
from different downstream tasks.

4.3 Noise Sensitivity

To evaluate the noise sensitivity of our model, we add differ-
ent ratio of noise to the edge set respectively. To do this, we

first randomly remove a certain proportion of all edges, and
them randomly select this many unconnected vertex pairs
and create new edges between these vertices (N.B. We make
sure that there is no isolated nodes exist). Table 5 presents
the results of vertex classification task when different ratio of
noise are given. We observe that the performance of LP and
GCN degrade significantly when noise becomes stronger in
most cases, as these semi-supervised methods are directly
conducted on the noisy networks. We can see that the two
generation methods NetGAN and GraphGAN also exhibit
relatively poor results, especially the performance of Net-
GAN, this reveals that they may not work when a noisy net-
work is given. The performance of NE is clearly not ideal.
This is likely due to the fact that NE is a denoising method
only designed for strong noise environment. In contrast, our
method consistently achieves comparable performance.
Moreover, NetRL is much more robust to noise, showing
minimal degradation in performance even noise rate
increases. And even if 20 percent noise are introduced, the
performance of NetRL is still acceptable. Overall, the results
indicate that the denoised network obtained by our method
does help in dealing with noise issues and results in better
downstream task performance.

4.4 Preserving Structural Properties

We further conduct experiments to validate whether the
denoised network encodes the structural properties of the
original network. Since Cora is an relatively clean network,
we take Cora as an illustrating example such that we can
obtain a more clear view when comparing the clean net-
work, noisy network and denoised network in Fig. 3. We
add 40 percent noise to Cora such that we can observe some
more distinguishing patterns between clean network and
noisy network. We here also provide the results of NetRL
and NE when conducting the vertex classification task on
Cora with 40 percent noise for your reference, i.e., NetRL
achieves 0.6752 and NE achieves 0.5266 in terms of F1 score.
Fig. 3 shows the visualization by an efficient graph drawing
algorithm [34] of various networks: the clean network

TABLE 4
Experimental Results on Social Tie Prediction Task in Terms of

AUC

DeepWalk GAE NetGAN GraphGAN NetD NetRL

FinV 0.5212 0.5410 0.5503 0.5616 0.5517 0.5881

Telecom 0.5736 0.6115 0.6195 0.6304 0.6371 0.6515

TABLE 5
F1 Score With Different Noise Rates on Vertex Classification Task
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without noise, the noisy network with 40 percent noise, the
denoised network by NE and the denoised network by
NetRL. We observe that the denoised network by NE
(Fig. 3c) does not have the capability to get an ideal
denoised network when too much noise is introduced,
while the denoised network by NetRL (Fig. 3d) exhibits dis-
cernible clustering and is better at denoising complex noisy
networks. The visualization further shows that the denoised
network by NetRL is more sparse than the clean network
and also has the natural structure similar to the clean net-
work (Fig. 3a). This is likely due to the clean network and
the denoised network by NetRL have one thing in common:
they all benefit to our downstream task.

The properties of the learned denoised networks should
also be investigated quantitatively, for this purpose we pro-
vide the derived MMD scores [12] as our evaluation metrics
to compare the degree distribution and the clustering coeffi-
cient distribution of the original network and the denoised
network from the noisy network with 40 percent noise.
Table 6 shows the MMD scores (the smaller the better) of
NE, which is the only work designed for denoising, and our
proposed NetRL (here, we do not consider FinV, Telecom,
BlogCatalog and Flickr because they are noisy themselves,
which can not be taken as our ground truth, i.e., the under-
lying clean network). We can see that NetRL significantly
outperforms NE on each dataset. For convenience of further
comparison, Fig. 4 visualizes the degree and clustering coef-
ficient distribution of the network obtained by NetRL and
other generation or denoising baselines, plus that of the
original network. We only show the results of Wiki due to
the space limit. Clearly, NetRL still performs best in captur-
ing network properties, with the distribution closely match-
ing the original network, which demonstrates that the
intermediate representation of NetRL encodes the topology
information most related to the original data. These

experimental results demonstrate that NetRL can denoise
networks not only benefiting the downstream task but also
effectively preserving the network structural properties of
the original network.

4.5 Case Study

In this section, we take a subgraph from Cora as an example
to demonstrate our denoising process, shown in Fig. 5. The
feature vector visualization is based on 0-1 normalized fea-
tures and we only show parts of important features after
mean-pooling considering its high-dimension. In the origi-
nal network (Fig. 5a), vertex #0 is a high-degree vertex,
while most of its neighbors possess different labels, which
runs contrary to our common sense. Moreover, from feature
vector visualization (Fig. 5c), we observe that vertex #0
presents a different feature pattern compared to its neigh-
bors that have different labels. Accordingly, we suspect that
the edges (in blue) between vertex 0 and other vertices with
different labels are anomalous. Taking a look at the
denoised network (Fig. 5b), it’s easy to find that the anoma-
lous edges are deleted, which is highly consistent with our
suspicions. Another interesting observation is that some
edges (in red) are newly created to meet network structural
balance (e.g., a person’s friends are more likely to be
friends). Overall, our denoised network does refine the net-
work structure and is well-suited for capturing the complex
real-world networks, which helps to enhance downstream
tasks.

4.6 Parameter Analysis

There are four important types of hyper-parameters affect-
ing the model performance, which are the maximal length
of edge sequence jLj, the time window T , the immediate
reward parameter b that regulates a trade-off between rint
and riht , and the learning rate a, respectively. Here, we

Fig. 3. Visualization of Cora networks, where different colors present different vertex categories.

TABLE 6
Comparison of NetRL and NE When Preserving Structural Infor-

mation of Original Network

Cora Citeseer Wiki

Deg. Clus. Deg. Clus. Deg. Clus.

NE 1.993 1.999 2.000 2.000 2.000 1.432
NetRL 1.959 0.439 1.934 0.217 1.475 0.470

We use MMD as the evaluation metric (the smaller the better).
Fig. 4. Clustering coefficient and degree distributions of the original net-
work and denoised networks of Wiki.
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present the suitable range of these parameters for reference.
To determine the default parameters settings, we vary

the values of jLj, T , b and a to observe how the performance
changes. In detail, we study jLj 2 10; 50; 100; 500; 1000f g,
T 2 5; 10; 15; 20; 25f g, b 2 0:1; 0:3; 0:5; 0:7; 0:9f g, a 2 f1e-6;
1e-5; 1e-4; 1e-3; 1e-2g. It should be noted that the learning
rate a remains at 1e-4while studying jLj and b, the maximal
decision sequence length jLj remains at 100 while studying
a and b, the time window T remains at 10 while studying a

and b, b remains at 0.7 while studying jLj and a. Due to
space limitations, we only present the results on FinV data-
set in Fig. 6. From Fig. 6a, we observe that our model yields
good results when jLj is shorter than or equal to 100, while
the performance will decrease if jLj is too long. The reason
is that a long edge sequence needs to be taken before we can
get feedback from the delayed reward, which will signifi-
cantly decrease the algorithm efficiency. One other thing to
note is that it’s better to set jLj a bit larger when the network
size is a larger one, otherwise too short edge sequence will
make it hard to obtain enough information to compute the
delayed reward From Fig. 6b, we can see that the best per-
formance can be achieved when T is set to 10. It can be
explained that few observed vertices in the current edge
sequence can not provide us enough information, while too

many observations would in turn bring noise and prevent
us from capturing the most important part of edges
sequence information. From Fig. 6c, we observe that the per-
formance decreases when a b is smaller than 0.5. Recall that
NetRL with smaller b tends to consider more rewards from
the original network, which will in turn introduce more
noise. Thus, when we can intuitively tune this parameter to
be larger if we have known there is a lot of noise introduced
in the given network. Fig. 6d shows that our model per-
forms best when a is set to 1e-4. A bigger learning rate may
lead to divergence, while a smaller learning rate may lead
to slow convergence.

4.7 Extension to Network Generation

It is interesting to verify if our method can be extended for
network generation, in which task we aim to construct a net-
work only according to vertex features X and no original
network is given. For the extension, we set b as 1, to ignore
riot ; When defining state, we replace all the representation
vectors fi with vertex feature vectors xi. The experimental
results in Table 7 show that we can still get a good perfor-
mance without the input network. Moreover, we observe
that the generation performance is sometimes even better
than the case that we can access the noisy network when the
noise rate is very large in FinV and Wiki. This indicates that
it’s better not to introduce too much original structure infor-
mation when we have known that the given network is very
noisy.

5 RELATED WORK

In line with the focus of network denoising problem, we
briefly describe three kinds of potential solutions: 1) The

Fig. 5. Examples of a subgraph from Cora, where some representative edges and vertices are displayed and analyzed here. Vertices are assigned
different colors to differentiate their labels. Red edges in original network represent the anomalous edges that we suspect, while blue edges in
denoised network represent the newly-created edges.

Fig. 6. Hyper-parameter analysis.

TABLE 7
Experimental Results of Network Generation

Precision Recall F1

FinV 0.3575 0.2088 0.2684

Telecom 0.8406 0.6394 0.7015

BlogCatalog 0.6230 0.6142 0.6120

Flickr 0.4129 0.4095 0.4057

Cora 0.7044 0.6001 0.6223

Citeseer 0.5617 0.5471 0.5462

Wiki 0.7178 0.7233 0.7158
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link prediction methods may be used to determine whether
an edge is noisy or not; 2) Some existing works can provide
us some denoising solutions; 3) Deep generative models can
learn the distribution of network structure and further
regenerate the network.

Link Prediction. The link prediction problem [16] aims to
predict future possible links in the network. It is feasible to
think that link prediction could be used as a method for net-
work denoising, i.e., predicting edge-existence probabilities
based on pairwise relationships. The mainstream methods
include common neighbors, Jaccard’s coefficient, Katz, and
latent feature models [17], [18]. However, few of these meth-
ods consider non-local network properties. Berton et al. [4]
proposed a graph construction algorithm that takes struc-
tural information into account, but it ignores the long-term
dependence among edges (i.e., whether to generate a new
edge is conditioned on the edges have already been
generated).

Network Denoising Models.We also note that there are sev-
eral works which also study network denoising problem.
Dong et al. [38] proposed to learn optimal network structure
and node embeddings from the noisy original network for
the community detection task. Gu et al. [39] aimed to select
a subset of informative links from the original network
which enhance the quality of community structures. How-
ever, both of these two works only focused on the commu-
nity detection task, while were hard to generalize to other
tasks. Xu et al. [40] considered the mutual influence between
noisy links and missing links, but they can not directly
obtain a denoised network. Gao et al. [37] proposed to
denoise an individual’s social networks by removing unim-
portant links as noises, but they mainly considered the
noisy links in the social media domain and did not take the
missing links into account. Another work on the denoising
network is Network Enhancement [31], which improves the
signal-to-noise ratio of the original networks leading to bet-
ter downstream performance. Whereas, they updated the
noisy edges only by modeling three or less path length, and
cannot deal with a longer path dependence. Moreover, this
method is mainly applied on biology networks in a limited
scale.

Deep Models. Along with the recent progress in deep
learning on networks [14], a number of deep network gener-
ation models have been proposed [8], [9], [11], [12], [13]. Li
et al. [9] proposed a graph generative framework based on
graph nets. However, they can only deal with small graphs
(e.g.,
40 nodes) due to the high memory and time cost. You
et al. [12] proposed a RNN-based hierarchical generative
model. Bojchevski et al. [13] proposed NetGAN to generate
graphs via random walks. Wang et al. [33] proposed Graph-
GAN, where the generator fits the underlying true connec-
tivity. However, these methods cannot directly perform
optimization on desired objectives. Besides, they do not con-
sider the feedback provided by downstream task, which is a
valuable feedback for network regeneration. Moreover,
hardly of these network generation methods have guaran-
teed that the intermediate representation is a denoised
network with regard to the original network, but our
model does.

There are some previous attempts to apply reinforcement
learning to learn relation classification from noisy data. The

closest work to ours is Jun et al. [1], which formulates
instance selection as a reinforcement learning problem.
However, this method focuses on noisy labeling and con-
structs a cleaned dataset by removing noisy instances, while
ours pays more attention on the correction process of noisy
links on graph. The difficulty of our method is how to cor-
rect our noisy data and formulate this links reconstruction
problem on graph via reinforcement learning.

6 CONCLUSION

NetRL, a novel method for denoising networks, is formu-
lated in the framework of reinforcement learning, along
with a carefully-designed reward function to both preserve
important topological properties from the original noisy
network while also benefiting the downstream task. Experi-
ments suggest that NetRL is capable of denoising networks
effectively, with better downstream task performance as
well as network properties. We further extend our work to
network generation problem and get a surprising result.

One of our intended directions for future is to apply
NetRL to more downstream applications, such as link pre-
diction, vertex clustering, recommendation systems and so
on. Another interesting direction would be to extend our
method to directed and weighted networks, and further
study its the ability to be generalized to dynamic networks
or heterogeneous networks. Moreover, it will be interesting
to see the denoised network can be transferred to different
downstream task in a more general way.
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