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Abstract. Graph data, prevalent in various domains such as telecommunication, supply 
chain, and social networks, holds significant potential for business, operations, and social 
administration. Collaborating on graph data across institutions or users can further unleash 
its value, making it a highly sought-after practice. However, such collaboration poses risks 
to information privacy and commercial confidentiality. In response, we introduce an inno
vative new model-sharing strategy for graph data collaboration. Here, a data owner pre
trains a graph neural network (GNN) model on their private graph data and then provides 
model users with query access to this model. The pretrained GNN acts as an intermediary, 
encapsulating knowledge from the private data without exposing it directly. Two funda
mental principles are essential for such a pretrained GNN model: model generalizability 
and privacy preservation. However, current efforts often fail to achieve both concurrently. 
To tackle this challenge and promote an open yet secure graph data collaboration frame
work, we propose a novel privacy-preserving operator. This operator integrates smoothly 
with graph data augmentation and graph contrastive learning, allowing the pretraining of a 
GNN that effectively eliminates private links at high risk of exposure while maintaining 
generalizability. Additionally, to improve model generalizability, we introduce a new 
method called generalizability learning to enhance the model’s adaptability when deployed 
on unseen data of model user. This approach is designed to simulate diverse environments 
and develop representations that remain invariant across these varied environments. Exten
sive experiments suggest that our model surpasses existing state-of-the-art approaches in 
striking an effective balance between privacy preservation and generalizability.
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1. Introduction
Graph data, also known as graph-structured data or network data, are ubiquitous data structures used for model
ing the interactions (i.e., edges) between objects (i.e., nodes), providing rich topological information and generic 
connectivity patterns (Barabási 2013). Examples of graph data include social, telecommunication, and supply 
chain networks (Zhou et al. 2020). Recent computational technology advancements (e.g., cloud computing, deep 
learning) have facilitated the use of graph data in decision support and production process optimization.1 As a 
result, the global market size of the graph database is rapidly growing, and it is expected to reach USD 4.5 billion 
by 2026.2

The escalating demand for graph data are particularly notable. Consider a scenario where Foursquare is sup
posed to collaborate with Twitter.3 Twitter is one of the largest social media platforms, with over 500 million 
monthly active users in 2024, constituting an extensive private social network. In contrast, Foursquare, famous 
as a location-sharing-featured social media platform, maintains a much smaller monthly active user base of 
55 million. Foursquare may seek to enhance downstream tasks such as friend recommendation, influencer 
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identification, and fake account detection by leveraging Twitter’s rich network information as valuable supple
mentary knowledge.

However, it is highly improbable for any single entity to practically possess and sustain diverse graph data 
resources. As a result, there is a growing demand for sharing or collaborating on graph data with partners and 
external institutions to augment in-house data. Typically, companies actively seek collaborations with external data 
partners who share a portion of their user base (or user data commonality) but possess larger and higher-quality 
data sets to enhance their operational task performance (Bauer et al. 2020), as illustrated by the Twitter–Foursquare 
collaboration. Nevertheless, because of concerns related to commercial confidentiality and information privacy 
issues (e.g., refer to General Data Protection Regulation and California Consumer Privacy Act), sharing graph data 
directly is typically challenging or not permitted. Consequently, although graph data represent a concealed gold 
mine in the big data era, the majority of valuable graph data, in reality, remain inaccessible.

To navigate challenges in graph data collaboration, a viable solution involves facilitating data collaboration in 
a data-sharing-free manner, where knowledge is shared instead of raw data. Recent advances in artificial intelli
gence (AI) techniques, such as pretraining strategy (Han et al. 2021), have made it feasible for data owners to 
train an AI model on their local data and share only the pretrained AI models (also known as models or pretrain
ing models) with their partners. This provides model users flexibility to obtain knowledge by querying the pre
trained AI model with their own data. We conceptualize this data-sharing-free method as model sharing, which 
enables the goal of information sharing while minimizing the risk of privacy breaches.

In this study, we specifically address two primary objectives for an ideal graph model in the context of model 
sharing: model generalizability and privacy preservation. We believe these dual imperatives underpin the fundamen
tal principles of a collaborative model. Specifically, model generalizability requires the models for collaboration 
be capable of learning universal and transferable knowledge from the data owner’s training graph, ensuring that 
the knowledge embedded in the pretrained models can be easily adapted to unseen graphs of model users. This 
objective necessitates the practical usefulness of models used for information sharing, as distorted information 
sharing renders data collaboration meaningless. Moreover, privacy preservation requires that adversaries acces
sing the pretrained model cannot reveal the private information of the training graph (i.e., defend against infor
mation inference attacks). This specifies that qualified models must ensure data privacy to adhere to the 
information interests of data owners and comply with regulations.

However, it is worth noting that it is always technically challenging to balance the trade-off between privacy 
preservation and model generalizability, because implementing strong privacy preservation approaches often 
hinders the model’s ability to accurately discern and learn from the transferable pattern of the data (Li and Li 
2009). Indeed, existing research mainly falls into two lines, yet each has inherent limitations for the desired graph 
model for model sharing. One line introduces some strategies of pretraining graph neural networks (GNNs) to 
ensure model generalizability (Qiu et al. 2020, Xu et al. 2024), but many pretrained GNN models pose risks of 
privacy leakage. The other line focuses on the privacy-preserving graph models, although most of them cannot 
be generalized to unseen data with different tasks (Liao et al. 2021, Wang et al. 2021, Hu et al. 2022). Although 
some straightforward solutions can combine these two branches of research, such as adopting differential pri
vacy on graph data before pretraining GNNs (Wu et al. 2022, Sajadmanesh et al. 2023), these approaches often 
compromise important transferable structures, resulting in an unfavorable privacy–generalizability trade-off 
(Abadi et al. 2016). Therefore, this study aims to propose a model that empowers the graph pretraining models with 
both generalizability and privacy-preservation capabilities.

Our study yields multifold contributions. First, we are among the first to introduce a model-sharing strategy 
for graph data collaboration, which is an area of great need yet largely overlooked. In contrast to conventional 
strategies of direct graph data sharing or releasing embeddings, we are pioneers in releasing a privacy- 
preserving pretrained GNN model. This innovative strategy ensures both privacy preservation and model gener
alizability when utilized with model users’ own data to acquire additional knowledge. Second, we design a 
novel privacy-preserving operator that integrates seamlessly with graph data augmentation, resulting in a 
privacy-preserving graph data augmentation. This approach addresses the privacy concern by removing private 
links with a high possibility of privacy leakage while guaranteeing model generalizability. In contrast, existing 
graph data augmentation methods often fall short in effectively addressing privacy concerns in data collabora
tion. Third, we introduce a novel method of generalizability learning designed to enhance model generalizabil
ity. This method simulates a variety of environments and learns representations invariant across these different 
environments. Such an approach ensures that the pretrained GNN model, developed by the data owner, can be 
easily adapted to downstream tasks on unseen graphs. In contrast, most existing GNNs are designed with the 
assumption that the training and test graphs are drawn from the same distribution, which often leads to poor 
performance on unseen graphs (Cao et al. 2023, Huang et al. 2024). Finally, to the best of our knowledge, we are 
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among the first to empirically explore the graph properties and graph substructures for which privacy or gener
alizability matters through the analysis of observed network data. We consider both graph-level and node-level 
properties, suggesting that graphs with specific properties, such as low average degree and high network con
straint, enhance privacy protection in data sharing. However, complex substructures, like 4-clique, compromise 
privacy preservation while enhancing generalizability. These findings inspire scholars and practitioners (e.g., 
data owners) to figure out more tailored information sharing strategies based on the graph structures.

2. Literature Review
This research is highly related to three streams of literature: pretraining GNNs, privacy attacks and privacy- 
preserving approaches, and graph data augmentation.

2.1. Pretraining GNNs
Pretraining GNNs has shown great effectiveness for learning graph representations without costly labels, and 
can enhance the generalizability of GNNs. In the pretraining stage, these models learn universal knowledge 
from large-scale graph data using self-supervised or unsupervised techniques. This knowledge is then trans
ferred to specific downstream tasks during the fine-tuning stage. Initially, GNNs are pretrained using self- 
supervised or unsupervised methods that rely on neighborhood similarity assumptions, as proposed by Grover 
and Leskovec (2016) and Hamilton et al. (2017). These methods, however, struggle with generalizability to 
unseen graphs because of their restrictive assumptions. To overcome these limitations, researchers have devel
oped GNN pretraining strategies using graph generative models (Kipf and Welling 2016, Hu et al. 2020a) and 
contrastive learning methods (Hu et al. 2020b), which typically involve pretraining on graphs from one domain 
and fine-tuning on another data set from a similar or the same domain. Furthermore, to advance the generaliz
ability across different domains, attempts have been made at cross-domain graph pretraining (Qiu et al. 2020, 
Cao et al. 2023, Xu et al. 2024). They focus on learning transferable subgraph structural patterns through contras
tive learning. Such models can seamlessly transfer between different domains, and thus are employed as the 
backbone model in our study. Despite advancements in pretraining GNNs for enhanced generalizability, prior 
efforts have largely overlooked the privacy risks associated with pretrained models.

2.2. Privacy Attacks and Privacy-Preserving Approaches
Model-based privacy attacks, which target the provided machine learning (ML) model and focus on extracting 
information about either the training data or the model itself, are categorized into four primary types: member
ship inference, reconstruction, property inference, and model extraction (Rigaki and Garcia 2023). Membership 
inference attacks determine whether an input training sample was used in the training set. Reconstruction 
attacks (also known as attribute inference or model inversion) aim to recover sensitive features in the training 
data or the full training data sample (Rigaki and Garcia 2023, Zhou et al. 2023). When the training data are graph 
data (e.g., Zhou et al. 2023), graph reconstruction attacks are introduced to reconstruct the adjacency of nodes 
from the provided graph-based ML model. Property inference attacks are designed to extract undisclosed prop
erties of the training data set that are not explicitly encoded as features or directly related to the learning task 
(Rigaki and Garcia 2023). Last, model extraction attacks involve inferring the structure and parameters of the 
provided ML model (Orekondy et al. 2019). The privacy attack discussed in our paper is a kind of reconstruction 
attack that attempts to reconstruct private links, from the pretrained GNN model.

The growing concern for privacy issues has led to a focus on developing privacy-preserving techniques within 
the field. Considering the types of graph data collaboration, the main privacy-preserving methods include collab
oration through network embeddings, data publishing, and federated learning. Specifically, the first type of 
privacy-preserving network embedding releases node embeddings generated by privacy-preserving network 
embeddings (e.g., Wang et al. 2021, Hu et al. 2022, Han et al. 2024). The data publishing approaches directly pub
lish faithfully generated data rather than the actual private data (e.g., Arora and Upadhyay 2019, Wu et al. 2022). 
The third type is federated learning, wherein a graph model is constructed across decentralized clients without 
data exchange (e.g., Xie et al. 2021). This presents a fundamentally different perspective for achieving free data 
sharing, which necessitates a trusted server keeping users’ private information. Table A.1 (see Online Appendix 
A in the supplemental materials) outlines the comparison of these approaches with ours. Unlike privacy- 
preserving network embedding methods that release node embeddings, our novel approach releases a privacy- 
preserving pretrained GNN model. This allows model users to query with their own data to obtain knowledge. 
Additionally, the released model demonstrates the ability to generalize to model users’ unseen graphs. Unlike 
data publishing that requires direct data exchange, often compromising the balance between privacy and utility 
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(Li and Li 2009), our approach avoids data sharing and enhances this balance. Additionally, unlike federated 
learning, our model does not require a trusted third party.

2.3. Graph Data Augmentation
The primary objective of graph data augmentation is to find a transformation function that converts a given 
graph into augmented views (or augmented graphs). These augmented views enrich the original graph by 
introducing variations that have the potential to help the model generalize better across different graphs (You 
et al. 2020). Graph data augmentations fall into two main categories: structure oriented and feature oriented. 
Structure-oriented augmentations alter the graph’s adjacency matrix, such as typical methods like edge perturba
tion, subgraph sampling, node dropping, etc. Edge perturbation involves randomly adding or removing edges 
to perturb the graph structure (You et al. 2020), whereas subgraph sampling typically generates a connected 
subgraph induced from sampled nodes (Qiu et al. 2020, Xu et al. 2024). Node dropping, on the other hand, 
aims to drop or add a set of nodes and a set of edges from the input graph (You et al. 2020). Another line of 
structure-oriented augmentation approaches modifies graph structure while incorporating domain knowledge 
(Rong et al. 2020); however, this often confines their applicability to specific domains. Feature-oriented augmen
tations modify node features through techniques such as adding noise (Feng et al. 2019) or masking features 
(You et al. 2020). Although multiple graph data augmentations have been introduced, few effectively address 
privacy concerns. This study introduces a privacy-preserving graph data augmentation method that removes 
private links with a high possibility of privacy leakage while ensuring generalizability in the augmented 
view.

3. Problem Formulation
The model sharing for graph data is a kind of data collaboration that facilitates the use of closed graph data with
out sharing them. This strategy involves two parties: the data owner and model user. Each party has its own 
graph data Gtrain � (Vtrain, Etrain) (with the node and edge sets Vtrain and Etrain) and Gdown � (Vdown, Edown) (with 
the node and edge sets Vdown and Edown), respectively. Notably, the data owner, typically with a more extensive 
or exclusive data set, gives the model user an advantage by utilizing the data owner’s pretrained GNN model. 
This allows the model user to gain insights that would otherwise be unattainable because of their own data lim
itations. For instance, small and medium-sized enterprises often struggle with inadequate and low-quality data 
for developing ML models (Bauer et al. 2020), leading them to adopt pretrained models from larger enterprises. 
Additionally, these two parties often share a subset of nodes, such as an overlap in user bases. For example, 90% 
of Twitter users also engage with Facebook, and 50% of Instagram users are active on Twitter (Smith and Ander
son 2018). This commonality facilitates the extrapolation of insights from one company’s data to enhance down
stream performance on another, providing a solid foundation for collaboration. Specifically, the data owner 
pretrains a GNN model eθ : G → Z (e for short) with parameters θ on Gtrain, mapping a graph G to a D-dimensional 
representation Z ∈ RD, and then shares query access to the model with the model user. This allows the model user 
to query the model with their own data, gaining insights without directly accessing the private data. Now we for
mally define the model-sharing strategy for graph data collaboration (MSS4Graph) problem.

Definition 1 (MSS4Graph Problem). Consider a data owner, company A, which privately owns a training graph 
Gtrain. This company collaborates with a company B (i.e., model user), which owns its downstream graph Gdown. 
It is assumed that Gtrain and Gdown share a subset of nodes or have the same node set. The goal of company A is 
to pretrain a GNN model eθ on Gtrain. Then, company A shares the query access to e with company B, such that 
company B can query the model with their own data Gdown to obtain representations of Gdown for downstream 
task. The model e is designed to concurrently achieve the following two principles: 

i. Privacy-preserving principle: The adversary cannot precisely infer the private information from querying eθ 
with its own data Gdown. This ensures the privacy of data owner’s graph data.

ii. Generalizability principle: The pretrained model is supposed to be transferable to company B’s downstream 
graph Gdown, though Gdown is unseen to company A, thereby enabling company B to effectively perform down
stream tasks on Gdown. That is, the pretrained model can perform well on new, previously unseen data Gdown, not 
just on its training data Gtrain.

In the MSS4Graph problem, we follow prior studies, for example, Han et al. (2024) and Wang et al. (2021), to 
concentrate our efforts on protecting private links. We define the link existence between all node pairs in the 
data owner’s training graph as the private information (or private links). The adversary performs a model-based 
private link reconstruction attack as follows.
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Definition 2 (Model-Based Private Link Reconstruction Attack). Given the black-box query access to a pretrained 
GNN model e, trained on a private training graph Gtrain � (Vtrain, Etrain), the adversary aims to reconstruct the 
edge set of the training graph (i.e., Etrain) by querying the pretrained GNN model e using the downstream graph 
Gdown � (Vdown, Edown).

4. Proposed Method
In this section, we propose a novel method for the data owner to train a privacy-preserving pretrained GNN 
model, aimed at addressing the MSS4Graph problem outlined in Section 3. Our method is designed to mitigate 
privacy leakage risks while ensuring model generalizability. Before delving into our method details, we outline 
the framework of our method in Section 4.1. Then, Section 4.3 introduces the proposed privacy-preserving opera
tor to fulfill the privacy-preserving principle, and Section 4.4 presents the generalizability learning to fulfill the 
generalizability principle. The overall algorithm and complexity analysis can be found in Online Appendix B.

4.1. Framework Overview
The primary objective of our model is to achieve the privacy-preserving and generalizability principles simulta
neously. Figure 1 presents the overall framework of our model, consisting of five major modules: graph data 
augmentation, privacy-preserving operator, GNN model, graph contrastive learning, and generalizability learn
ing. The graph data augmentation, GNN model, and contrastive learning modules constitute the basic graph pre
training framework. The privacy-preserving operator and generalizability learning are dedicated to fulfilling the 
privacy-preserving and generalizability principles, respectively. Below, we detail the specific responsibilities of 
these modules.

4.1.1. Graph Data Augmentation, GNN Model, and Graph Contrastive Learning Modules. These three modules 
form the core of the basic graph pretraining framework (Qiu et al. 2020, Xu et al. 2024). Specifically, the graph 
data augmentation takes the training graph as input and generates augmented views. Given these augmented 
views, we adopt graph contrastive learning as the graph pretraining task, aiming to learn transferable structural 
representations. Its goal is to distinguish nodes based on their local structures. Drawing on the principles of con
trastive learning, graph contrastive learning maximizes the consistency between two augmented views of the 
same ego network of the same node compared with those of different ego networks (Qiu et al. 2020, Xu et al. 
2024). Finally, we use a GNN model, specifically, the graph isomorphism network (GIN; Xu et al. 2019), to obtain 
node representations by mapping its local structure to a latent representation.

4.1.2. Privacy-Preserving Operator Module. The privacy-preserving operator is designed to satisfy the privacy- 
preserving principle. Current graph data augmentation functions, as referred to in Equation (1), predominantly 
perform random perturbations on the graph (Qiu et al. 2020, You et al. 2020), or based on domain knowledge 
(Rong et al. 2020). However, these graph data augmentations often do not adequately protect the privacy of 
training graphs. To address this, we introduce a privacy-preserving operator, which is designed to achieve the 
privacy-preserving principle by removing private links with a high possibility of leakage from the augmented 
view, while ensuring that the retained links can guarantee model generalizability. This results in a privacy- 
preserving augmented view Gp◦t, which is then fed into the GNN model for representation learning.

4.1.3. Generalizability Learning Module. This module is introduced to fulfill the generalizability principle. As a 
model-sharing strategy, the pretrained GNN model should have generalizability. Specifically, the pretrained 

Figure 1. (Color online) The Overall Framework of Our Proposed Model for the MSS4Graph Problem 
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GNN model can be easily adapted to downstream tasks on model users’ unseen graphs, that is, the downstream 
graph. However, most GNNs are designed under the assumption that the training and test graphs come from 
the same distribution, and thus struggle with out-of-distribution generalization (Cao et al. 2023, Huang et al. 
2024). These models cannot effectively share knowledge to model users with unseen data. To this end, we are 
inspired by the invariant learning (Li et al. 2022) and posit that the learned representation is invariant across dif
ferent environments, thereby ensuring generalizability. Therefore, we introduce a novel generalizability learning 
method to produce a GNN model whose output representations can survive a large class of distribution shifts 
implied by different environments.

In summary, these five modules collaboratively address the MSS4Graph problem as follows. First, a training 
graph provided by the model user is processed through graph data augmentation to generate augmented views. 
To mitigate the privacy leakage risk in these views, they are then passed through the privacy-preserving opera
tor, resulting in the privacy-preserving augmented views. Subsequently, these privacy-preserving augmented 
views are fed into the GNN model and obtain graph representations. The GNN model is trained with graph con
trastive learning to learn structural representations across graphs and generalizability learning to ensure the 
model generalizability.

4.2. Basic Graph Pretraining Framework
A basic graph pretraining framework, without specifically addressing the privacy-preserving and generalizabil
ity principles, is commonly a combination of graph data augmentation, a GNN model, and contrastive learning 
(Qiu et al. 2020, Xu et al. 2024).

4.2.1. Graph Data Augmentation. Given an ego network4 of a node G ∈ G, the graph data augmentation function 
t(·) would generate new views of G (i.e., G’s augmented views) as

Gt � t(G), t ~ T, (1) 

where T is the set of graph data augmentation functions, and each function t sampled from T maps G to the new 
augmented view Gt. Graph data augmentation can generate different views of the same ego network, facilitating 
the graph contrastive learning process.

To ensure the GNN model trained on augmented views from the training graph is transferable to the model 
user’s downstream graph, it is crucial that the graph data augmentation t(·) preserves transferable patterns, that 
is, structural patterns commonly present in ego networks. This definition underlines that nodes with similar 
structural patterns in their ego networks are likely to share similar semantic meanings across different graphs, a 
finding largely supported by previous studies. For example, User 1’s ego networks on Twitter and Foursquare, 
depicted as and , respectively.

Given that users usually exhibit stable social personalities and preferences across social platforms (Benevenuto 
et al. 2012), it is notable that the structural patterns—specifically, that many neighbors of this user are intercon
nected (demonstrating a high clustering coefficient)—are maintained across different social media networks. 
Such consistent structural patterns across platforms exemplify what we define as the transferable pattern.

Given the defined transferable pattern, we are now ready to define the graph data augmentation function that 
can preserve the transferable pattern in augmented views. Specifically, we define the graph data augmentation 
function as the subgraph sampling (Qiu et al. 2020), a technique to sample representative local structures of 
nodes from the original graph. This sampling is achieved by performing random walks with restart in a specified 
node’s ego network (Tong et al. 2006). The walker starts from the specified node, goes randomly to one of its 
neighborhood with a probability, and returns to the ego node with another probability. This process is repeated 
multiple times to traverse various paths within the ego network. The subset of nodes visited during these walks 
induces the subgraph, known as the augmented view. Figure 2(a) illustrates the graph data augmentation on 
User 1’s (U1) ego network. Through three walks of four steps each, paths like U1→U2→U1→U3 yield a subset 
of nodes visited: {U1, U2, U3, U5, U6, U7, U8, U9}. These nodes induce View 1, a subgraph that retains all the 
edges among the visited nodes present in the original ego network of User 1. A similar process generates View 2, 
differing only in the specific paths taken by the walker. These augmented views can be taken as a simulation of 
User 1’s varying interaction patterns across different platforms. In this example, it is observed that despite fewer 
nodes, many neighbors of User 1 are interconnected in the augmented views (i.e., transferable pattern), similar to 
the ego network of User 1 on Twitter. Such augmented views thus effectively mimic User 1’s ego network on 
Foursquare or other platforms.

Xu et al.: A Novel Privacy-Preserving Graph Pretraining Model 
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4.2.2. Graph Contrastive Learning. Given the augmented views generated by graph data augmentation, graph 
contrastive learning is then performed to empower the GNN model to learn transferable structural representa
tions (Qiu et al. 2020, Xu et al. 2024). This can be done by maximizing the consistency between two augmented 
views of the same ego network compared with those of different ones. The optimization can be formulated as

min
θ

Lpretrain � EG Et1, t2~T lcl(eθ(t1(G)), eθ(t2(G))), (2) 

where lcl is the contrastive loss InfoNCE, that is, maximizing the mutual information between the two represen
tations (van den Oord et al. 2018), t1 and t2 are two augmented views sampled from graph data augmentation 
function set T, and eθ is a GNN model with learnable parameter θ (serving as our graph pretraining model).

Figure 2(b) shows an illustrating example of how contrastive learning learns the transferable pattern. First, the 
privacy-preserving augmented views (which will be introduced in Section 4.3) of User 1, GU1

p◦t1 
and GU1

p◦t2
, are 

input into a GNN model, which then produces their corresponding representations, e(GU1
p◦t1
) and e(GU1

p◦t2
). Simi

larly, for User 99, we can also obtain the representations e(GU99
p◦t1
) and e(GU99

p◦t2
). Then, the graph contrastive learning 

trains the GNN model with the goal of maximizing the similarity between representations of two privacy- 
preserving augmented views of User 1, for example, e(GU1

p◦t1
) and e(GU1

p◦t2
) in this example. Simultaneously, it aims 

to maximize the discrepancy between representations of two different users’ views, for example, e(GU1
p◦t1
) and 

e(GU99
p◦t1
).

4.2.3. GNN Model. For the GNN model, we utilize the GIN (Xu et al. 2019), one of the most expressive and state- 
of-the-art GNN architectures because of its capability of distinguishing graph structures. This capability is parti
cularly critical in our graph data collaboration setup, where graph structure is the most valuable information. 
GIN effectively maps a graph G to distinct representations. At the l-th layer, GIN updates node v’s representation 
as h(l)v �MLP(l)

�
h(l�1)

v +
P

u∈N (v) h(l�1)
u

�
, where N (v) is the set of neighboring nodes of node v, and MLP(l) is a mul

tilayer perceptron. Given the node representations, the graph G’s representation hG can be obtained by averaging 
the node representations at the final layer L, that is, hG �MEAN({h(L)v |v ∈ G}):

4.3. Privacy-Preserving Operator
Existing graph data augmentation discussed in Section 4.2 cannot preserve the privacy of the training data. To 
address this significant privacy concern, we propose a privacy-preserving operator designed to achieve the privacy- 
preserving principle. This operator integrates seamlessly with existing graph data augmentation techniques to 
form a novel privacy-preserving graph data augmentation. Through this privacy-preserving graph data augmenta
tion, we can generate privacy-preserving augmented views that effectively eliminate private links with a high 
potential for leakage but also maintain model generalizability without compromise.

4.3.1. Privacy-Preserving Graph Data Augmentation. We present the formulation of the privacy-preserving 
graph data augmentation, which consists of two fundamental components: the graph data augmentation func
tion t(·) and the privacy-preserving operator p(·).

Definition 3 (Privacy-Preserving Graph Data Augmentation). Given an ego network of a node G and a set of graph 
data augmentation functions T, the privacy-preserving graph data augmentation aims to eliminate edges that 

Figure 2. (Color online) Illustrative Example of Graph Data Augmentation and Contrastive Learning 

(a) Graph data augmentation (b) Contrastive Learning

Xu et al.: A Novel Privacy-Preserving Graph Pretraining Model 
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pose a high risk of privacy leakage and have a low contribution to model generalizability in t(G). This is achieved 
by applying a privacy-preserving operator p(·) on t(G). The obtained privacy-preserving augmented view is

Gp◦t � (p ◦ t)(G), t ~ T, (3) 

where (p ◦ t)(G) � p(t(G)), and t(·) is a function sampled from T.

In the privacy-preserving graph data augmentation, the graph data augmentation function t(·) and the privacy- 
preserving operator p(·) work collaboratively to generate the privacy-preserving augmented views that are both 
secure and effective. We will next detail the design of the privacy-preserving operator p(·), which is tailored to 
eliminate edges that pose significant privacy risks while having low contribution to the model generalizability.

4.3.2. Design of Privacy-Preserving Operator p(·). Our privacy-preserving operator is designed with the dual 
objective of minimizing privacy risks while maintaining model generalizability. Directly utilizing the augmented 
graph Gt may not suffice, as redundant graph features, such as private links with a high possibility of leakage, 
could still be retained in the randomly augmented views. In the effort to alleviate privacy leakage, we introduce a 
privacy-preserving operator p(·) and redefine the composition of t(·) and p(·) as our proposed privacy-preserving 
data augmentation. The resulting Gp◦t can be used as the privacy-preserving augmented view for graph pretrain
ing, which mitigates possible privacy leakage and also maintains generalizability.

Admittedly, deleting all links to create an augmented graph view would ensure no privacy exposure but 
would create a dilemma: retaining some links could lead to privacy leakage, yet a model trained on a graph with
out any edges (or with randomly sampled links) could be ineffective. Therefore, we achieve privacy preservation 
by measuring the possibility of privacy leakage for each link and selectively removing links based on their possi
bility of privacy leakage. We refer to several heuristic metrics for computing the node similarity scores as the 
likelihood of link existence (Lü and Zhou 2011). By increasing the probability of removing edges with high heu
ristic metrics when generating augmentation views, the risk of leaking privacy could be lowered. Specifically, we 
choose three heuristic metrics to measure the possibility of privacy leakage associated with each link: 
• Preferential attachment: This is a first-order heuristic based on one-hop neighbors of two target nodes (Barabási 

and Albert 1999). Preferential attachment (PA) between nodes x and y is PA(x, y) � |N(x) | · |N(y) | , where N(x)
denotes the neighbor set of node x.
• Adamic–Adar: This is a second-order heuristic that measures closeness based on shared neighbors within two- 

hop neighborhoods of two target nodes (Zhou et al. 2009). The Adamic–Adar (AA) score between nodes x and y is 
calculated as AA(x,y) �

P
z∈N(x)∩N(y) 1=log |N(z) | .

• SimRank: This measure reflects node similarity based on the entire graph, positing that similar nodes have sim
ilar neighbors (Jeh and Widom 2002). The SimRank (SR) score is calculated recursively: if x � y, then SimRank 
is defined as one. Otherwise, the SimRank score between nodes x and y is given by SR(x, y) � γ

P
a∈N(x)

P
b∈N(y)

SR(a, b)=( |N(x) | · |N(y) | ), where γ ∈ [0, 1] is a damping factor.
To measure privacy risks, edges with high scores in preferential attachment, Adamic–Adar, and SimRank are 

considered more vulnerable to privacy breaches. We calculate the privacy leakage score of an edge (x, y) as

pdel
xy �

MEAN ( ˆPA(x, y), ÂA(x, y), ˆSR(x, y))
P
(a,b)∈Et

MEAN ( ˆPA(a, b), ÂA(a, b), ˆSR(a, b))
, (4) 

where Et is the edge set of Gt, and ˆPA(x, y) � PA(x, y)=
P
(a, b)∈Et

PA(a, b), and similarly for ÂA and ˆSR.

Given the risk posed by high privacy leakage scores pdel
xy , it is wise to consider removing such edges from the 

augmented graph Gt. To this end, we sample a designated percentage (τdel%) of the edges in Gt without replace
ment based on pdel

xy for potential removal. The sampled edges constitute an edge-removal candidate set R.
Although removing all high-risk edges could safeguard privacy, this might overly distance the augmented 

view from the original graph, undermining the model’s effectiveness for downstream tasks due to lost generaliz
ability. Thus, we aim for our privacy-preserving data augmentation to avoid excessively aggressive edge 
removal by only selectively removing edges that pose high privacy risks but low contribution to generalizability. 
To achieve this balance, on one hand, we introduce a perturbation bound to constrain the number of edge 
removals. On the other hand, the operator should ensure essential edges remain to preserve the graph’s seman
tics and maintain model generalizability. We leverage node centrality measures—degree centrality, eigenvector 
centrality, and PageRank centrality—as key metrics to identify crucial edges and nodes, drawing on their wide
spread use in network science (Newman 2010): 

Xu et al.: A Novel Privacy-Preserving Graph Pretraining Model 
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• Degree centrality: This measure reflects a node’s influence based on the number of connections it has. Nodes 
with higher degrees are often more influential and can represent key figures in a network, like influencers in social 
networks.
• Eigenvector centrality: Unlike degree centrality, eigenvector centrality accounts for the influence of a node’s 

neighbors, assigning more importance to nodes connected to other highly connected nodes. It is defined as the 
eigenvector corresponding to the greatest eigenvalue of the adjacency matrix of a graph. The eigenvector centrality 
of node x is the xth element of the eigenvector u, which is defined by Au � λu, where A is the adjacency matrix of 
the training graph with the greatest eigenvalue λ.
• PageRank centrality: The PageRank algorithm can uncover the most influential nodes based on the mechanism 

of influence propagation along edges. The PageRank centrality of node x is πx � αPπx + 1, where P is the transition 
matrix with Pi, j � 1= |N( j) | if node i and j are connected, and otherwise Pi, j � 0. The vector 1 denotes an all-ones 
vector; α is a damping factor set as 0.85.

Using the centrality measures of nodes, edge centrality for an edge (x, y) is defined as the average node central
ity of its connecting nodes, specifically, Deg(x, y), Eig(x, y), and PR(x, y) for the edge centrality of degree, eigenvec
tor, and PageRank, respectively. The generalizability score of an edge (x, y) is calculated as a normalized weighted 
sum of these centralities, enhancing model generalization by emphasizing structurally important edges:

pkeep
xy �

MEAN ( ˆDeg(x, y), ˆEig(x, y), P̂R(x, y))
P
(a,b)∈Et

MEAN ( ˆDeg(a, b), ˆEig(a, b), P̂R(a, b))
, (5) 

where ˆDeg(x, y) �Deg(x, y)=
P
(a, b)∈Et

Deg(a, b), and similarly for ˆEig and P̂R.
Given that edges with a higher generalizability score pkeep

xy contribute more to model generalizability, it is bet
ter to retain them in the augmented graph Gt. Therefore, we randomly sample the τkeep percentage of the edges 
in Gt without replacement based on the score pkeep

xy for retention. The sampled edges constitute an edge-keeping 
candidate set K.

To obtain the privacy-preserving augmented view Gp◦t, we ensure it preserves privacy without sacrificing 
model generalizability. This involves removing edges from the augmented graph Gt that are identified in the 
edge-removal candidate set R but not protected by the edge-keeping candidate set K. The resulting removal 
edges form the set R \K. The final privacy-preserving augmented view Gp◦t is then obtained by removing edges 
in R \K from the augmented graph Gt. The privacy-preserving augmented view is subsequently used for model 
training.

Figure 3 details the workflow of the privacy-preserving operator applied to the augmented views of User 1’s 
ego network (shown in Figure 2(a)). This operator first calculates two key scores for each edge (x, y) in the aug
mented view: the privacy leakage score pdel

xy and the generalizability score pkeep
xy . Edges with high privacy leakage 

scores are marked as removal candidates, forming the edge-removal candidate set R. Edges with low generaliz
ability scores are also marked as removal candidates, whereas those with high generalizability scores are identi
fied as candidates for retention, comprising the edge-keeping candidate set K. Consequently, edges featuring in 
both high privacy risk and low generalizability (i.e., edges in R \K)—such as (U2, U3) in View 1 and (U4, U5) in 

Figure 3. (Color online) Illustrative Example of Privacy-Preserving Operator 
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View 2—are removed from the augmented views. This selective removal process yields the final, privacy- 
preserving augmented view.

4.4. Generalizability Learning
This section introduces a generalizability learning strategy for pretraining a GNN model to uphold the generaliz
ability principle. Specifically, this approach ensures that the pretrained GNN model, developed by the data 
owner, can be seamlessly adapted to downstream tasks on unseen graphs.

Drawing on invariant learning (Li et al. 2022), which suggests that the learned representation invariant across 
different environments can enhance generalizability, our objective is to produce a GNN model whose output 
representations can survive a large class of distribution shifts implied by different environments. To achieve 
such environment-invariant representations, existing invariant learning requires that their training data are col
lected from multiple environments (Chen et al. 2022, Li et al. 2022). For example, in a multigraph scenario, each 
graph typically comes from a different environment. However, the change of environments is unavailable in our 
cases, because the GNN model is only trained under a single environment, that is, the data owner’s single graph 
Gtrain. To address this limitation, we propose simulating various environments, aimed at creating a set of envir
onments diverse enough to facilitate the learning of environment-invariant representations, thereby mimicking 
the effect of having multiple real-world environments.

To simulate these environments effectively, we introduce a diverse graph data augmentation set Q, where each 
function qi ~ Q represents one diverse graph data augmentation function that can introduce variability. More spe
cifically, given the input graph G, the set Q enables us to generate a series of augmented graphs {q1(G), : : : , qK(G)}, 
ensuring that each resulting augmented graph is diverse from the others.

We further detail the workflow of each function qi(·). Given the input training graph Gtrain � (Vtrain, Etrain), we 
introduce variability to simulate diverse environments by assigning a random bias to each edge. For each edge 
(x, y) ∈ Etrain, a random bias π(x, y)

i is assigned from a uniform distribution:

π(x, y)
i ~ Uniform(0, 1), ∀(x, y) ∈ Etrain:

This transforms Gtrain into a graph with bias Gπi
train (which can also be viewed as Gtrain with edge weights πi). This 

step injects distinct randomness in different qi(·), thereby enabling different qi(·) to mimic different environments.
Subsequently, to generate the augmented graphs from Gπi

train, a biased random walk with restart is employed 
to sample subgraphs. The transition probability from node x to node y is

P(y |x) � π(x, y)
i

P
j∈N(x)π

(x, y)
i

, 

where N(x) denotes the set of neighbors of x in Gtrain. This biased random walk ensures that the probability of 
moving to a neighboring node y is proportional to the weight π(x, y)

i , simulating different “environmental” effects 
on the graph structure.

By doing so, qi(·) can help generate different environments. Recall that the invariant learning aims to learn the 
representations that are invariant across different environments. Therefore, the learned representation e(G) of the 
GNN model should satisfy

Pdo(p◦qi)(e(G) |G) � Pdo(p◦qj)(e(G) |G), ∀qi, qj ~ Q, (6) 

where qi and qj are the functions sampled from Q that simulate different environments, and Pdo(p◦qi) denotes the 
distribution by doing p ◦ qi on the graph.

To satisfy Equation (6), the GNN model e must produce similar output representations under varying environ
ments Gp◦qi . This can be done by minimizing the representation variance:

min
e

Lgeneral � EGVar({‖e(Gp◦qi)�µ‖ : qi ~ Q}), (7) 

where µ is the expectation of {e(Gp◦qi) : qi ~ Q}.
We use Figure 4 to illustrate the workflow of generalizability learning. To simulate diverse environments, the 

diverse graph data augmentation technique is first applied. We take the first view GU1
q1 

as an illustrative example. 
To obtain GU1

q1
, a random bias π(x, y)

1 is assigned to every edge (x, y) from a uniform distribution, as shown by the 
numbers in the table in Figure 4. This bias influences the transition probabilities for biased random walks, dictat
ing three walks of length four, resulting in paths like U1→U2→U3→U1. This process induces a subgraph GU1

q1 

from the nodes traversed. Notably, edges with low biases such as (U1;U4) are excluded, which are less likely to 
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be traversed. Ultimately, by implementing K diverse graph data augmentations, each characterized by unique 
biases during the biased random walk, we obtain K augmented views GU1

q1
, GU1

q2
, : : : , GU1

qK
. Each view is diverse from 

the others, ensuring a wide variety of simulated environments. Next, these views are processed by the privacy- 
preserving operator to yield corresponding privacy-preserving diverse augmented views GU1

p◦q1
, GU1

p◦q2
, : : : , GU1

p◦qK 
(a 

process we have already introduced by the example in Figure 3). Subsequently, the GNN model processes them to 
generate their representations. The objective of generalizability learning is to learn representations that are invari
ant to environmental changes by minimizing the variance among these representations.

5. Experiments
This section evaluates our method’s privacy-preservation and generalizability capabilities. Additional experi
ments and results on cross-relation and cross-time scenarios, ablation studies, efficiency analysis, and case stud
ies can be found in Online Appendix D.

5.1. Experiment Setup
5.1.1. Experimental Settings. To evaluate the privacy-preserving performance, we examine the effectiveness of 
an adversary in conducting a model-based private link reconstruction attack. Specifically, we assume that there 
exists an adversary in the model user that aims to reconstruct all the links in Gtrain, that is, infer the link existence 
between all node pairs. The adversary typically could query the released pretrained GNN model with its own 
graph data (i.e., the downstream graph Gdown) and obtain the node representations of Gdown. To mimic the adver
sary’s strategy, we first train an adversarial link predictor hφ : Rd × Rd → [0, 1] by taking 90% existent links in 
Gdown as positive samples and the same number of nonexistent links in Gdown as negative samples, and the 
remaining 10% of existent links and the same number of nonexistent links as the validation set of the adversarial 
link predictor. The goal of adversarial link predictor is optimized as

max
φ

X

(u,v)∈Ppos

log hφ(e(Gdown)[u], e(Gdown)[v])�
X

(u,v)∈Pneg

log hφ(e(Gdown)[u], e(Gdown)[v]), 

where Ppos and Pneg are the sets of existing and nonexistent links in Gtrain, respectively, and e(Gdown)[u] and 
e(Gdown)[v] are the queried representations of nodes u and v from the pretrained model e. Then, we use the 
trained link predictor to infer the private information (i.e., the link existence of all node pairs) in Gtrain. We take 
all existent links in Gtrain as positive samples and four times as many nonexisting links in Gtrain as negative sam
ples to evaluate the pretrained GNN model’s privacy-preserving performance. We report the area under the 
curve (AUC), where a lower value is preferable as it indicates reduced ability of the adversary to infer private 
links, thereby enhancing privacy protection.

Next, we measure generalizability by evaluating the model user’s downstream task performance on the down
stream graph Gdown. These tasks include node classification and link prediction. For node classification, the model 
user can obtain node representations of Gdown by querying the pretrained GNN model provided by the data 
owner. Then, the obtained node representations are fed into a logistic classifier for node classification, evaluated 

Figure 4. (Color online) Illustrative Example of Generalizability Learning 
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using 10-fold cross-validation. For link prediction, we construct the training data using all existing links as posi
tive samples and randomly select nonexistent links, at five times the number of positive samples, as negative 
samples. Then we train a downstream link predictor on the training data that takes a pair of node representations 
as input and outputs the link existence probability. We evaluate the performance on the test data that comprise 
unobserved existing links and nonexistent links at five times the number of these existing links. A higher perfor
mance in downstream tasks (i.e., downstream performance), measured by micro F1 scores, indicates better 
model generalizability. This is because we evaluate the downstream performance on a graph that differs from 
the training graph, effectively accounting for the model’s generalizability to unseen data.

5.1.2. Data Sets and Scenarios. As mentioned earlier, data collaborations typically begin when a data owner, who 
possesses high-quality and abundant data, partners with a model user having much fewer data. We thus examine 
scenarios where the data owner has about twice the data of the model user. In the first, the data owner’s and model 
user’s graphs share the same types of relations. In the second, their graphs derive from different data sets.

In the first scenario, we evaluate our model on three social network data sets: Deezer (Rozemberczki et al. 
2019), Facebook (Rozemberczki et al. 2021), and LastFM (Rozemberczki and Sarkar 2020). Each data set involves 
a node classification task: predicting user gender for Deezer, classifying Facebook pages into categories such as 
politicians or companies, and determining user location for LastFM. To simulate a model-sharing scenario, we 
construct the data owner’s training graph using Kruskal’s (1956) algorithm to form a shortest spanning tree. We 
then sample and add half of the remaining edges from the graph G to the spanning tree, forming the training 
graph Gtrain � (Vtrain, Etrain). This approach ensures the connectivity of the training graph. Additionally, we con
struct the model user’s downstream graph in line with the conditions of data advantage from the data owner 
and data commonality, ensuring the model user benefits from the model-sharing strategy. More specifically, we 
sample half of the nodes from the training graph’s nodes Vtrain as downstream graph nodes Vdown. The edges 
among Vdown are sampled by performing random walks started at each node in Vdown.

In the more realistic scenario where data owner and model user graphs stem from two different data sets, we 
evaluate on the Twitter–Foursquare (Zhang and Philip 2015) and phone–email (Zhang et al. 2020) data sets. As 
these data sets lack node labels, we focus on link prediction tasks. The Twitter–Foursquare data set contains two 
social networks from Twitter and Foursquare. To simulate the data advantage, Twitter is used as the training 
graph, whereas a subgraph induced from random walks on half of the Foursquare nodes serves as the down
stream graph for the model user. Similarly, for the phone–email data set, we use the phone network as the train
ing graph and create the downstream graph by performing random walks on a sampled node subset of the 
email network. The subgraph induced from these walks serves as the downstream graph.

In all these scenarios, for the link prediction downstream task, the test data (i.e., comprising links unobserved 
from the downstream graph) are constructed by sampling edges from the original data set that are among Vdown 
but not part of Edown, selecting approximately int(3=7 |Edown | ) as positive samples. Nonexistent links are ran
domly sampled at a rate five times the number of these positive samples to form the negative samples.

5.1.3. Baselines. We compare our method with the following privacy-preserving baselines that can be divided 
into three types: (1) adversarial learning–based methods, GAL-W and GAL-TV (Liao et al. 2021); (2) differential 
privacy–based methods, EdgeRand (Wu et al. 2022) and LapGraph (Wu et al. 2022); and (3) a graph pretraining 
model without a privacy-preserving mechanism, GCC (Qiu et al. 2020). Details can be found in Online Appendix C.

5.1.4. Implementation Details. We follow Qiu et al. (2020) and Liao et al. (2021) to tune the hyperparameters of 
our method. During pretraining, we set the iteration number to 132, batch size to 128, and learning rate to 5e-3, and 
use a five-layer graph encoder with a hidden size of 64. The τdel, τkeep, and K are set to 0.8, 0.8, and 10. When evalu
ating model generalizability on the link prediction task, the queried representations from the pretrained model are 
used as node attributes in the downstream graph. This graph is then fed into a one-layer GIN (Xu et al. 2019) to 
obtain learned node representations. The probability of link existence is determined by taking the inner product of 
their learned node representations, followed by a sigmoid function. The adversarial link predictor is trained using a 
two-layer MLP with a hidden size of 32. For other implementation details, refer to Online Appendix C.

5.1.5. Availability. The data sets, source code, and detailed results are available online (Xu et al. 2025).

5.2. Experimental Results
5.2.1. Privacy-Preserving Performance. Table 1 shows the privacy-preserving capability of different methods. 
Among all the baselines, EdgeRand, LadGraph, and GCC are three models empowered with generalizability. 
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Compared with them, we can see that our model achieves the best privacy-preserving capability, which indicates 
our superiority in protecting private information in the training graph. The privacy-preserving performance of 
our model is attributable to the carefully designed privacy-preserving graph data augmentation, which utilizes 
various heuristic metrics to estimate the private links with a high possibility of privacy leakage. Note that though 
GAL-W and GAL-TV show privacy-preserving capability, they cannot serve the pretraining model in the model- 
sharing strategy because of their extremely limited generalizability performance (see Table 2).

5.2.2. Model Generalizability Performance. Table 2 shows the generalizability of each method on downstream 
tasks of node classification and link prediction. The results indicate that the privacy-preserving capability of our 
model is obtained without sacrificing generalizability and, in some cases, even slightly enhances it. Compared 
with the graph pretraining model without privacy protection (i.e., GCC), our model achieves almost the same 
generalizability results but well preserves the privacy. We also find that LapGraph and EdgeRand achieve strong 
generalizability but show poor privacy-protection capability. The potential reason might be that both methods 
add noise to the adjacency matrix of the training graph, thus improving generalizability. However, the random 
noise is not sufficient to preserve privacy because it fails to effectively remove the private links that have a high 
possibility of leakage.

5.2.3. Privacy–Generalizability Trade-Off. Our analysis further delves into the privacy–generalizability trade-off 
across different models. Specifically, we systematically assessed this trade-off by varying the trade-off para
meters of our model, as well as those of baselines, which include differential privacy–based methods (i.e., Edge
Rand and LapGraph), adversarial training–based methods (i.e., GAL-W and GAL-TV), and a pretraining model 
without privacy preservation (i.e., GCC) on the Deezer data set. To elaborate, the trade-off parameter τdel in our 
model varies among 0.7, 0.8, 0.9, 1.0, 1.1, and 1.3; ɛ in EdgeRand and LapGraph varies among 2, 3, 4, 5, and 6; 
and the equivalent parameter λ in GAL-W and GAL-TV spans 0.4, 0.5, 0.6, 0.7, and 0.8. Figure 5 illustrates that 
higher x-axis values indicate lower privacy preservation, whereas higher y-axis values reflect better generaliz
ability. Although GAL-W and GAL-TV are good at preserving privacy, their limited generalizability affects their 
use as pretraining models in a model-sharing strategy. Compared with EdgeRand, LapGraph, and GCC, our 
model, ideally positioned in the upper-left corner, demonstrates the best balance between generalizability and 
privacy protection.

Table 1. The Privacy-Preserving Performance of Private Link Reconstruction Attack, Reported as AUC

Methods

Private link reconstruction attack (AUC%)

Deezer Facebook page LastFM Twitter–Foursquare Phone–email

GCC 86.19 (0.38) 92.02 (0.21) 88.70 (0.09) 72.28 (0.51) 82.32 (0.23)
GAL-W 69.29 (0.29) 72.12 (0.08) 74.49 (0.24) 64.24 (0.27) 70.06 (0.64)
GAL-TV 71.52 (0.25) 75.83 (0.26) 78.28 (0.23) 65.02 (0.31) 71.67 (0.24)
EdgeRand 83.05 (0.62) 85.29 (0.58) 87.45 (0.40) 69.15 (0.21) 78.90 (0.22)
LapGraph 83.75 (0.08) 85.90 (0.19) 86.83 (0.30) 69.33 (0.15) 79.47 (0.39)
Ours 82.35 (0.17) 83.80 (0.15) 83.55 (0.11) 68.82 (0.24) 74.87 (0.37)

Note. Standard deviations are in parentheses.

Table 2. The Generalizability Performance of Downstream Tasks on Node Classification and Link Prediction, Reported as 
Micro F1

Methods

Node classification (micro F1%) Link prediction (micro F1%)

Deezer Facebook page LastFM Deezer Facebook page LastFM Twitter–Foursquare Phone–email

GCC 56.14 (0.35) 49.26 (0.14) 23.62 (0.35) 78.24 (0.69) 78.85 (0.59) 88.30 (0.45) 82.32 (0.23) 87.80 (0.29)
GAL-W 37.29 (0.16) 40.85 (0.10) 11.83 (0.06) 67.41 (0.53) 70.87 (0.64) 75.73 (0.51) 68.75 (0.20) 76.36 (0.20)
GAL-TV 37.53 (0.60) 42.96 (0.06) 13.15 (0.37) 69.59 (0.38) 70.92 (0.33) 76.91 (0.36) 69.50 (0.42) 77.40 (0.22)
EdgeRand 55.28 (0.31) 48.53 (0.16) 23.22 (0.26) 77.42 (0.29) 79.67 (0.61) 88.88 (0.69) 82.53 (0.38) 88.05 (0.74)
LapGraph 55.78 (0.38) 49.06 (0.13) 22.91 (0.53) 78.96 (0.51) 79.56 (0.75) 88.09 (0.25) 83.10 (0.35) 87.34 (0.59)
Ours 56.05 (0.18) 49.62 (0.19) 23.57 (0.30) 78.77 (0.54) 78.05 (0.51) 89.30 (0.24) 83.39 (0.24) 88.41 (0.22)

Note. Standard deviations are in parentheses.
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6. Conclusions and Discussion
This study introduces an innovative model-sharing strategy for graph data collaboration that avoids direct 
data sharing. The model-sharing strategy allows the data owner to pretrain a GNN model on their private 
data and then provide query access to the model for the model user. This enables the model user to query the 
pretrained model with their own data, gaining insights without directly accessing the private data. To success
fully achieve this strategy, two fundamental principles are essential for the pretrained GNN model: privacy 
preservation and generalizability. The privacy-preserving operator integrates seamlessly with graph data aug
mentation to effectively eliminate private links with a high possibility of leakage while ensuring generalizabil
ity. The generalizability learning is innovated to enhance the model’s adaptability to diverse environments, 
which enhances model generalizability when the model is deployed on unseen data. By integrating these 
two modules into the basic graph pretraining framework, the proposed strategy achieves a strategic balance 
between generalizability and privacy preservation. Our method is applicable to a variety of real-world appli
cations. To illustrate, consider a data collaboration scenario between Twitter (data owner) and Foursquare 
(model user). Foursquare can enhance its business operations by leveraging Twitter’s user network without 
compromising privacy. Our experiments with the Twitter–Foursquare data set indicate that the Twitter’s 
model pretrained by our proposed strategy surpasses most benchmarks in privacy preservation and 
generalizability.
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Endnotes
1 See “Why Using Graph Analytics for Big Data Is On the Rise,” https://www.techtarget.com/searchbusinessanalytics/feature/Why-using- 
graph-analytics-for-big-data-is-on-the-rise (accessed on September 16, 2023).
2 See “Global Valuation of Graph Database Market Size & Share Will Reach USD 4,500 Million By 2026: Facts & Factors,” https://www. 
globenewswire.com/en/news-release/2021/10/07/2310420/0/en/Global-Valuation-of-Graph-Database-Market-Size-Share-Will-Reach-USD- 
4-500-Million-By-2026-Facts-Factors.html (accessed on September 16, 2023).
3 Twitter was rebranded as “X” in 2023. In this paper, the platform is referred to by its original name, “Twitter”, for clarity and because of the 
widespread recognition of the former name.
4 For a node, its k-ego network is the subgraph induced by its neighbors within k hops.

Figure 5. (Color online) Experimental Results of Privacy–Generalizability Trade-Off 

Notes. The spatial positions of the methods in the figure help distinguish them. “Ours” appears as the topmost line in the upper-right corner, 
indicating the best generalization-privacy trade-off. LapGraph and EdgeRand are located just below “Ours” on the upper right, showing high 
generalization but slightly more privacy leakage. GCC is shown as a single point at the far right, marking the highest privacy leakage. GAL-W 
and GAL-TV occupy the lower-left area, indicating lower privacy leakage but also lower generalization.
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Zhou T, Lü L, Zhang YC (2009) Predicting missing links via local information. Eur. Phys. J. B. 71(4):623–630.
Zhou F, Zhang K, Xie S, Luo X (2020) Learning to correlate accounts across online social networks: An embedding-based approach. INFORMS 

J. Comput. 32(3):714–729.
Zhou Z, Zhou C, Li X, Yao J, Yao Q, Han B (2023) On strengthening and defending graph reconstruction attack with Markov chain approx

imation. Krause A, Brunskill E, Cho K, Engelhardt B, Sabato S, Scarlett J, eds. Proc. 40th Internat. Conf. Machine Learn. (JMLR.org), 
42843–42877.

Xu et al.: A Novel Privacy-Preserving Graph Pretraining Model 
16 INFORMS Journal on Computing, Articles in Advance, pp. 1–16, © 2025 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
.1

98
.6

4.
13

0]
 o

n 
08

 J
un

e 
20

25
, a

t 2
3:

50
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 

http://www.pewinternet.org/2018/03/01/social-media-use-in-2018
http://www.pewinternet.org/2018/03/01/social-media-use-in-2018
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://doi.org/10.1287/ijoc.2023.0115.cd
https://github.com/INFORMSJoC/2023.0115

	Toward Graph Data Collaboration in a Data-Sharing-Free Manner: A Novel Privacy-Preserving Graph Pretraining Model
	Introduction
	Literature Review
	Problem Formulation
	Proposed Method
	Experiments
	Conclusions and Discussion


