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Defending Data Inference Attacks Against Machine
Learning Models by Mitigating Prediction
Distinguishability

Ziqi Yang
Fan Zhang

Abstract—Neural networks are vulnerable to data inference
attacks, including the membership inference attack, the model
inversion attack, and the attribute inference attack. In this paper,
we propose PURIFIER to defend against membership inference
attacks by quantifying the differences between dataset members
and non-members in three dimensions: individual shape, statistical
distribution, and prediction label. PURIFIER involves transforming
the confidence scores produced by the target classifier, resulting in
purified confidence scores that are indistinguishable across the di-
mensions above. We conduct experiments on widely-used datasets
and models. The results show that PURIFIER offers robust defense
against membership inference attacks with superior efficacy com-
pared to prior defense techniques while maintaining minimal utility
degradation (e.g., less than 0.7% classification accuracy drop of
most datasets). Additionally, our extended experiments explore the
effectiveness of PURIFIER in defending against the model inversion
attack and the attribute inference attack.

Index Terms—Data privacy, machine learning security, member-
ship inference.

1. INTRODUCTION

ACHINE learning offers significant convenience in daily
life. However, its use of private information also poses
potential risks of data breaches. Typically, users are granted ac-
cess to the APIs of service providers, which return a confidence
score vector or a label from the output of the machine learning
model. However, many studies indicate that the predicted infor-
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mation can be exploited by adversaries to launch a data inference
attack. These attacks aim to deduce private information about
the data involved in the workflow of the target model [1], [2],
[3]. Data inference attacks can be broadly divided into three
categories: the Membership Inference Attack (MIA) [1], [4], [5],
[61, [7], [8], [9], [10], [11], the model inversion attack [12] and
the attribute inference attack [13]. In the MIA, the adversary is
tasked with ascertaining whether a specific data sample belongs
to the training data of the target model. The model inversion
attack seeks to reconstruct the input data from the confidence
scores generated by the target model. The attribute inference
attack aims to deduce sensitive attributes hidden in training
samples. The shared characteristic among them is to deduce data
privacy information from publicly accessible outputs generated
by the target model (such as confidence vectors).

In this paper, we utilize the MIA as a primary case study
to explore the mitigation of data inference attacks. This is
because extensive research has been conducted on the MIA in
comparison to the other two attacks. It is widely acknowledged
that the main factor contributing to the success of MIAs lies in
the differences between prediction results for members and non-
members. For example, a model that overfits the training dataset
behaves more confidently when processing inputs from mem-
bers than non-members. In general, the prediction differences
between members and non-members can be observed in three
primary aspects. (1) Individual shape. The confidence scores of
members and non-members differ in their individual shapes, i.e.,
the distribution of confidence scores in an individual confidence
vector. This is because the target model often assigns a higher
probability to the predicted result when given a member than a
non-member [4], [5]. (2) Statistical distribution. The statistical
distribution of confidence scores for members and non-members
within the same class is distinctly different. We find that con-
fidence scores on the members are more concentrated in the
encoded latent space, while those on non-members are more
dispersed. BlindMI [9] exploits such statistical difference to
infer membership by comparing the distance variation of the
confidence scores of two generated datasets. (3) Prediction label.
The confidence score differences between members and non-
members can result in prediction label discrepancies. Member
samples have a higher probability of being correctly predicted
than the non-member samples, which leads to a difference in
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classification accuracy. Various label-only attacks exploit this
distinguishability to perform their attacks [6], [7], [8].

Several methods have been proposed to defend against the
MIA while preserving the confidence scores, such as Ly regu-
larizer [1], dropout [5], model-stacking [5], min-max regulariza-
tion [4] and differential privacy [14], [15], [16]. MemGuard [17]
further enhances the preservation by enforcing the confidence
score vectors to stay within a small distortion around the orig-
inal confidence score vectors generated by classifiers without
any defense. Relax Loss [18] reduces the difference between
members and non-members by relaxing the loss of member
samples. On the other hand, some studies believe that removing
the confidence information in the prediction result is a way
of defending against the membership inference attack. How-
ever, these defenses are compromised by label-only inference
attacks [6], [7], [8], where membership is inferred only from the
predicted label.

In this paper, we propose a defense mechanism, namely
PURIFIER, to defend against MIAs. This method utilizes the
confidence scores generated by the target model as its in-
put and subsequently produces transformed confidence scores.
These transformed scores exhibit indistinguishable characteris-
tics among members and non-members in terms of individual
shape, statistical distribution, and prediction label. More specif-
ically, (1) to purify individual shapes, we propose a strategy
to train a module named confidence reformer. The confidence
reformer is trained on the confidence scores predicted by the
target model on non-members, which allows the model to learn
the individual shape of confidence scores on non-members.
The confidence scores of members become indistinguishable
from those of non-members after being transformed by the
confidence reformer. (2) To purify the statistical distribution, we
introduce a Conditional Variational Auto-Encoder (CVAE) into
the confidence reformer to add Gaussian noises to confidence
scores. The Gaussian noises disperse the initially statistically
clustered confidence scores, thereby obscuring the distinction
between members and non-members within a statistical distri-
bution. (3) To purify prediction labels, we propose a mechanism
named label swapper. To counteract the label-only attack that
exploits the classification accuracy gap between members and
non-members, the label swapper alters the prediction labels
on members to another class at a specially designed rate. To
enhance the robustness of PURIFIER, we introduce the k-Nearest
Neighbor (kNN) method in the label swapper to tolerate small
perturbations added by the attacker.

Experimental results underscore the efficacy of PURIFIER in
defending against MIAs, the model inversion attack, and the
enhanced attribute reasoning attack. The results are validated on
7 widely used datasets, including CIFAR 10, Purchase100, Face-
scrub530, CIFAR100, Texas, Location, and UTKFace. Com-
pared with existing defense methods, PURIFIER exhibits superior
overall defensive efficacy against data inference attacks. For in-
stance, when utilizing PURIFIER, the member inference accuracy
of the NSH attack on FaceScrub530 is reduced by 0.79% to
14.67% compared to other defense methods. The reconstruc-
tion error of the model inversion attack reaches the highest
when employing the PURIFIER defense. Furthermore, under the
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protection of PURIFIER, the enhanced attribute inference attack
is completely ineffective. By comparing the individual shape
and statistical distribution visualization results before and after
applying PURIFIER, we observe that PURIFIER transforms the
confidence vector features of members towards those of non-
members, consequently reducing the distinguishability between
members and non-members.

Contributions: In summary, the contributions of this paper are

as follows.

1) Tothebestof ourknowledge, we are the first to study MIAs
from three distinct aspects: individual shape, statistical
contribution, and prediction label.

2) We design PURIFIER to defend against data inference at-
tacks. This system comprises two main components: the
label swapper and the confidence reformer. By transform-
ing confidence scores, PURIFIER achieves indistinguisha-
bility between members and non-members in the above
three aspects.

3) Based on our comprehensive experiments, PURIFIER
demonstrates superior performance in effectiveness when
defending against data inference attacks compared to other
defense techniques.

II. INFERENCE ATTACKS ON MACHINE LEARNING

Machine learning has been demonstrated to be susceptible
to a variety of inference attacks [1], [6], [12], [19], which
allow adversaries to extract valuable information about the target
model from prediction APIs alone. Depending on the inference
goals, these inference attacks can generally be categorized into
two types: model inference and data inference. Model inference
seeks to acquire knowledge about the target model itself, such as
its parameters and architecture [20], [21], [22], [23]. In contrast,
data inference focuses on extracting information about the data
that the target model processes [1], [2], [6], [12], [19], [24],
[25], [26]. In this paper, we concentrate on three significant
and representative data inference attacks: membership inference
attack, model inversion attack, and attribute inference attack. In
this section, we first introduce these three data inference attacks,
followed by a discussion of existing defense strategies. Finally,
we analyze the limitations of current defense mechanisms.

A. Data Inference Attacks

Membership inference, model inversion, and attribute infer-
ence attacks are three widely-studied types of data inference at-
tacks that threaten the security and privacy of machine learning.
They differ in their inference goals.

Membership Inference Attack: In the MIA, the attacker is
asked to determine whether a specific data record constitutes
part of the target model’s training dataset.

Confidence-Based Attack [1], [5]: Shokrietal. [1] present the
MIA on black-box models, where the attacker has access only to
the confidence scores F'(z) of the target model F' for a given data
sample z. To infer the membership, the attacker trains a binary
classifier A (also referred to as an attack model) that takes F'(z)
as input on z and predicts whether z is a member (Label 1) or
non-member (Label 0) of the training dataset Dy,.,;, of F, i.e.,
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A(F(z)) — {0,1}. Before training A, the attacker trains a set of
shadow models F' on an auxiliary dataset drawn from the same
data distribution as the Dy,.4qy to replicate F. A is then trained
on the confidence scores F'(z) predicted by the shadow models
instead of the target model on the members and non-members
of the shadow models’ training data. Salem [5] introduces the
Mlleaks attack, demonstrating that only one shadow model F' is
required to train the attack model.

Label-Only Attack [7]. The label-only attack is a form of
black-box MIA that operates solely on the output label of the
target model, rather than its confidence scores. Li et al. [7]
propose three distinct types of label-only attacks. In the Gap
Attack, it is assumed that the attacker possesses the ground truth
of the data sample and predicts membership based solely on
whether or not F' correctly labels the sample. The Transfer attack
involves relabeling an auxiliary dataset by querying F', thereby
enabling the adversary to train a shadow model F' for launching
a score-based MIA locally. However, in the Boundary attack,
the auxiliary dataset is not accessible. The adversary utilizes
adversarial noises to perturb the input to mislead F' and identifies
samples that exceed a certain threshold as members.

Confidence & Label-Based Attack [4]. Nasr et al. propose the
NSH attack, which trains three distinct attack models (A, A,
As)toinfer the membership of the data samples. Specifically, A,
and A utilize the confidence score and label information as their
respective inputs. A3 accepts the outputs from both A; and Ao
to predict the membership of a given data sample. The attacker
is assumed to possess knowledge of the membership labels,
enabling them to query the target classifier for confidence scores
of members and non-members without training the shadow
models F'.

Distribution Difference-Based Attack: The BlindMI attack
[9] probes the target model and extracts membership semantics
via differential comparison, eliminating the need for shadow
models. Specifically, BlindMI initially generates a dataset of
non-members, Sy, onmem, DY transforming existing samples into
new ones. It then differentially moves samples from a target
dataset, Siarget, t0 Snonmem in an iterative manner. If the differ-
ential move of a sample results in an increase in the set distance,
BlindMI classifies the sample as a non-member; conversely, if
the set distance decreases, the sample is considered a member.

Confidence & Distribution-Based Attack: Carlini et al. [10]
present MIA from First Principles and introduce an alternative
evaluation metric, suggesting that MIAs should be assessed by
computing their true-positive rate at low false-positive rates (e.g.,
<0.1%). They discover that the majority of previous attacks
perform poorly under this criterion. To meet this evaluation
standard, they propose a method that trains N shadow models
F" on random samples from an auxiliary dataset. Half of these
models are trained on the target sample, while the other half
are not (referred to as IN and OUT models). Membership is
inferred by comparing confidence scores on the target sample
from the target model with those from both the IN and OUT
models. Yeetal. [11]introduce Enhanced MIA, acomprehensive
hypothesis-testing framework that not only allows for the consis-
tent formalization of prior work but also supports the design of
novel MIAs. These attacks employ reference models to achieve
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a significantly higher power (true positive rate) for any error
(false positive rate). They propose four attacks, namely S, P, R,
and D, each characterized by varying settings on the boundary
between members and non-members.

Model Inversion Attack: Model inversion aims to reconstruct
the original input data from the confidence scores predicted
by the target model. Fredrikson et al. [2] introduce a method
to infer a representative sample from a training class against
a white-box target model. It casts the inversion task as an
optimization problem in the input domain to identify the most
suitable representative for a given class. Yang et al. [12] propose
a model inversion attack in the black-box setting. Specifically,
they train an inversion model Gy on an auxiliary dataset that is
the inverse of the target model 7'. G takes the confidence scores
of T as input and its goal is to reconstruct the original input data.

Attribute Inference Attack: Attribute inference aims to infer
sensitive attributes [19], [26], [27], [28] or statistical infor-
mation [24] about the training dataset. For example, the race
attribute of the samples can be inferred with an API for the
gender classifier Cyepqger on the UTKFace dataset [13]. The
adversary has an auxiliary dataset and queries the target model to
obtain the confidence scores. Subsequently, the adversary trains
a classifier C,.q. on these confidence scores, using the race
attribute as the label. Thus the race of a sample can be predicted
with the output of Cyeper-

B. Defenses Against Data Inference Attacks

Previous defenses against data inference attacks have mostly
focused on mitigating MIAs. However, there has been a notable
lack of research addressing the simultaneous defense against the
model inversion attack and the attribute inference attack on clas-
sification models. Consequently, we present existing defenses
against MIAs as representative examples in the literature that
defend against data inference attacks.

Min-Max Game [4]: Nasr et al. suggest the incorporation of an
adversarial regularizer into the loss function of the target model.
This is designed to ensure that the model not only minimizes
prediction loss but also maximizes membership privacy. The
training procedure is conceptualized as a min-max optimization
problem.

mfin <L(f) —&-km}?XGf(h)) (1)

where f indicates the target model, h represents the inference
model, and the regularization factor A controls the balance
between the classification loss function L and the regularizer G.

MemGaurd [17]: Jia et al. propose to post-process the confi-
dence score vector by converting it into an adversarial example
to fool the membership classification of the attack model A. In
particular, the defender injects carefully designed noise into the
confidence score vector predicted by the target model 7" to form
an adversarial example, controlled by several hyper-parameters
c1, co2, c3. To achieve this goal, the defender first trains its attack
model A’. Thus, T can generate the adversarial example against
A’ in a white-box manner.
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Model Stacking [5]: Model stacking fundamentally employs
an ensemble method, which combines multiple simple classifiers
with a complicated one to generate the final prediction. This
technique is frequently utilized to reduce overfitting and can be
employed to mitigate MIAs.

MMD defense [8]: Li et al. introduce a defense strategy
designed to bridge the gap between members and non-members
by deliberately diminishing the training accuracy. The training
procedure strives to align the training and validation accuracies,
employing a new set regularizer derived from the Maximum
Mean Discrepancy (MMD) between the softmax output empir-
ical distributions of the training and validation datasets. MMD
is defined as:

n

Distance(X,Y) = %Z D(x;) — % Z D(y;) (2)

i=1 j=1 "

where H is a universal RKHS [29], & : X — H is a Gaussian
kernel [30] mapping function, each x; (y;) is the softmax output
of the ¢-th training (validation) instance.

SELENA [31]: Tang et al. introduce a novel framework for
training privacy-preserving models that generate similar be-
haviors on member and non-member inputs, thereby mitigat-
ing MIAs. This framework, SELENA, comprises two primary
components. The first is an ensemble architecture for training,
called Split-Al This architecture partitions the training data into
random subsets and trains a model on each subset. An adaptive
inference strategy is employed during testing. The ensemble
architecture then aggregates the outputs of those models that
do not include the input sample in their training data. Let F' de-
note Split-AlL it can be calculated as F = + 37,1, () Fi(2),
where z is a training sample, L is the number of sub-models
that are not trained with x, F; is a sub-model, and Id,,,,
represents the set of L non-model indices for each z. The second
component, Self-Distillation, uses the same training set as well
as the predicted confidence vectors from Split-Al as soft labels
to train a distillation model that serves as the defense model.
Relax Loss [18]. Current research underscores a significant cor-
relation between the distinguishability of training (i.e., member)
and testing (i.e., non-member) loss distributions and the model’s
susceptibility to MIAs. Drawing inspiration from these findings,
Chen et al. introduce a training framework that employs arelaxed
loss with a more attainable learning objective. The framework
mainly makes two changes during the target model training.
First, the loss is relaxed using gradient ascent to elevate the loss
of member data to a level that is attainable by non-member data:

0 0+71-VL©O) 3)

where 6 is model parameters, 7 denotes the learning rate. Then,
to mitigate the side-effect of the utility caused by relaxed loss,
they flatten the target posterior scores for non-ground-truth
classes and compute the cross entropy loss based on the new
soft label. The posterior flattening is defined as:

¢ ifys =1
=0 - o)
(I =p£)/(C —1) otherwise
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where C'is the number of output classes, p; is the original model
softmax label output of the sample and ¢; stands for the flattened
soft label.

C. Limitations of Existing Defenses

Previous research on defense mechanisms against the MIA
has not discussed their implications for the model inversion
attack and attribute inference attack. The latter two attacks
represent a significant threat to the security and privacy of
machine learning data. To our knowledge, there are currently no
known defense methods that effectively counteract membership
inference, model inversion, and attribute inference attacks.

Overfitting is not the sole cause of MIAs [1]. Even when
various machine learning models are similarly overfitted, they
may reveal differing amounts of membership information. This
discrepancy can be attributed to their unique structures, which
may “recall” varying degrees of information about their training
datasets. The attacker exploits the target model’s confidence
score distinctions between members and non-members to launch
an MIA [1]. Current defense mechanisms, such as those aimed at
reducing overfitting, contribute to this reduction in distinguisha-
bility. However, these defense strategies could be more effective
if the distinguishability itself were directly reduced. However,
certain existing methods exhibit suboptimal performance. For
instance, Relax Loss requires retraining the target model, and
SELENA needs to train multiple shadow models, which means
greater computational overhead.

III. PROBLEM OVERVIEW

In this section, we first introduce three roles and their capabil-
ities involved in the data inference attack and defense problem.
Then, we present our motivation for defense.

A. Roles & Capabilities

We consider the classification models of neural networks. A
machine learning classifier F' is trained on its training dataset
Dy¢yqin to map a sample x to a class based on the confidence
vectors F'(x). In our problem, there are three parties: model
owner, attacker and defender.

1) Model Owner: The model owner trains a machine learn-
ing classifier F' on its training dataset Dy,q;, which is drawn
from some underlying data distribution p,.(x). The classifier F
is trained with the goal of making predictions on unseen data
which we refer to as test dataset D,.4;. Let x represent the data
drawn from p,., and y be the vectorized class of x. The training
objective is to find a function I’ to well approximate the relation
between each data point (x,y). Formally, we have ' : x — y.
The training process is to optimize an objective function L(F").
The model owner releases the trained classifier F' as a black
box, for example, as a cloud service, and provides prediction
APIs to users. The users can query F’ with their own data sample
X € Dy.s through the prediction APIs. The classifier F' returns a
confidence score vector F'(x) to the users. The confidence score
vector is a probability distribution of the classifier’s confidence
over all the possible classes. For example, the i-th element F'(x);
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is the probability of the data x belonging to class i. We usually
take the class with the maximum probability to be the predicted
label y of the data x.

2) Attacker: The attacker aims at performing data inference
attacks against the target classifier F'. We assume that the
classifier F' works as a black-box “oracle” to the attacker, i.e.,
the attacker can only query F' with a sample x and obtain the
prediction scores F'(x) or the predicted label y. The attacker is
also assumed to have an auxiliary dataset D, which consists
of data samples sampled from a similar data distribution as the
training data distribution of F', in addition to a subset of the
training set samples. Take the MIA as an example, the attacker
is asked to determine whether a given data record x is part of the
training data Dy,qip, according to F'(x). A common approach is
to leverage the auxiliary dataset D, and train a membership
classifier that takes F'(x) as input and predicts the membership.

3) Defender: The defender could be the model owner or a
third party with access to the target classifier’s prediction results.
The defender possesses a training dataset Dy,..;,, and a reference
dataset D,.. r, composed of non-member data, to implement the
defense. For any query to the target classifier from users, the
defender modifies the prediction results of the target classifier
before returning it to users. The attacker has access only to the
modified prediction results from the defender. In particular, the
defender wants to achieve the following three goals:

Defense: The defender aims at defending the membership
inference attack, model inversion attack, and attribute inference
attack. Specifically, the defender wants to reduce the member-
ship and attribute classification accuracy and increase the recon-
struction error of the input sample performed by the attacker.

Utility: The classification accuracy on the test dataset Dy,
is one of the metrics to evaluate the utility of the model. The
defender aims at defending the target model with the least loss
of utility (i.e., the least reduction of classification accuracy on
D test ) .

Efficiency: The defense mechanism should incur acceptable
overhead in the total training time and the test time of predicting
a data sample.

B. Motivation

Membership inference attacks can be largely divided into
three categories depending on the underlying distinguishability
of confidence scores that they exploit: individual shape, statis-
tical distribution, and prediction label. In this paper, to fairly
evaluate the defense performance of our approach, we consider
all three categories of membership inference attacks:

Individual shape: The distinguishability of individual shapes
is exposed because members and non-members differ in the
distribution of confidence scores. For example, the classifier
usually predicts the class of member data with a high degree
of confidence. This implies that the value of the maximal score
in the vector would be larger for member samples compared
to non-member samples. This can be illustrated by Fig. 1(a)
and (b), where we calculate the frequency of confidence on
members and non-members in CIFAR10 for correct class and
prediction uncertainty. The prediction uncertainty is measured
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Fig. 1. Individual and statistical distinguishability between members and non-
members in CIFAR10.

as the normalized entropy ﬁ > ¥ilog(y;) of the confidence

vector y = F'(x), where k is the number of classes. It can be
seen that there are more non-members than members at lower
confidence levels. This is because, without defense, the target
model often exhibits overfitting, resulting in a higher training
set accuracy compared to the test set accuracy. Conversely, at
higher confidence levels, members outnumber non-members. In
addition, the distribution of members tends to predict low values
of uncertainty compared to non-members.

Statistical distribution: The distinguishability of statistical
distribution implies that confidence scores on samples from the
same class are more similar than those on non-member samples.
Conversely, the confidence scores of samples from different
classes exhibit less similarity compared to non-member samples.
In an intuitive way, we reduce the dimensionality of the latent
vectors corresponding to these confidence scores and plot them
in a coordinate graph, as shown in Fig. 1(c) and (d). We can see
that members of the same class cluster more closely together than
non-members, while members of different classes are distinctly
separated from each other.

Prediction label: The prediction label for a sample is the
class corresponding to the maximal score in the confidence
vector. The distinguishability of prediction labels directly leads
to the difference between training accuracy and testing accuracy,
where the former is higher in general. For example, the training
accuracy of the classifier on CIFAR10 is 99.99%, while the
testing accuracy is 95.92% in our experiment.

IV. APPROACH: PURIFIER

We propose PURIFIER as a defense against data inference at-
tacks. The main idea is to alter the distribution of the confidence
score vector F'(x) so that it appears indistinguishable between
members and non-members and hinders the reconstruction of the
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Fig. 2.  Architecture of PURIFIER. PURIFIER consists of a label swapper H and a confidence reformer G. H can reduce the gap of classification accuracy between

members and non-members by modifying the predicted labels of specific training data. GG is a Conditional Variational Auto-encoder (CVAE), with the purified
predicted label through H as the condition. G can reform the confidence scores by mapping H (F(x)) to the latent space r with the encoder and mapping it back

with the decoder.

input vector and the inference of sensitive attributes. PURIFIER
consists of a label swapper H and a confidence reformer G,
as shown in Fig. 2. The label swapper H takes the original
confidence score vectors as input. It modifies the predicted labels
of some members by swapping the maximum confidence score
with another confidence score. This process aims to minimize
the classification accuracy disparity between members and non-
members, thereby achieving indistinguishability in the predicted
labels. The confidence reformer G takes as input the modified
confidence score vectors from H and reforms them as if they
were generated from non-members, thereby ensuring indistin-
guishability of individual shape and statistical distribution.

A. Design of Label Swapper

A notable discrepancy exists in the classification accuracy
of predicted labels when comparing member and non-member
data. The adversary may exploit this disparity to distinguish
between the two. To address this problem, we design a mech-
anism named label swapper in the inference stage. The label
swapper H is used to modify the predicted labels of members
to reduce the classification accuracy gap between members
and non-members. As illustrated in (5), H randomly selects
training samples to substitute their predicted labels with another
predicted score at a certain swap rate pg.qp, Which is determined
by the disparity in classification accuracy between member data
and non-member data.

ACCtrain — ACCtest

Pswap = (5)
ACCtrain

where accrqin and accies: are the training accuracy and the
test accuracy of the target classifier respectively. Note that H
determines whether the input sample is a member or a non-
member and only performs label swapping on member data. At
the swap rate pgyqp, the training accuracy can be decreased to

Algorithm 1: Pre-Process of Label Swapper.

Input: The training dataset D;,qin, the target
classifier I, the swap rate psuqp, the number
of classes n, the number of neighbors of
KNN £, the distance precision of KINN d

Output: The function knn after initialization, the

offset of the false label list L, ¢
1C=0,;
2 fOI' (xtrai’m ) ytraini) S Dtrain dO
3 ¢ = F(xtraini);
4 l; = argmax(c;);
5 C=CWHu}
6 end
7 knn = KNN(C, k, d);
8 Los = {0i|o; = rand from(0, n), where 0 < i <
pswap * HDtrain| |}r
9 return knn, L,

testing accuracy, achieving indistinguishability of the prediction
label.

A naive implementation is as follows. When the input confi-
dence vector corresponds to the member data, ' swaps its label
with a probability p,.,qp. However, this approach is susceptible
to a replay attack. As the model repeatedly predicts the same
member sample, it may produce different results. This indicates
that the input is a member sample and exposes a more severe
distinguishability between members and non-members.

To mitigate the replay attack, we do not use pg,qp as the swap
probability. Instead, we number each member sample from O to
[|Dtrain||-1. For the member with a number ¢ in the range of
[0, Pswap * || Dirainl|], we randomly generate an offset o, that is
less than the number of classes n, and exchange the confidence
corresponding to its label with the confidence of the class after
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the offset o;. This approach ensures that the predicted results for
the same member sample remain consistent.

In addition, we also consider another potential attack, where
adversaries infer whether a certain sample x € Dyy.qip 1S the
member or non-member by adding small perturbations to the
input data and observing changes in the predicted result. To
defend against this attack, we introduce the KNN method as
a component of the label swapper to identify suspicious noisy
members. Specifically, if the Euclidean distance between the
confidence vector of a sample and those of its nearest k neighbor-
ing members is less than a certain threshold parameter d, the sam-
pleisclassified as amember. Furthermore, if the member number
i corresponding to this sample satisfies i < pswap * || Dirainl|s
its label should be swapped. In the inference stage, we query
kNN with the confidence vector of the input sample and get its
corresponding ground truth label.

Algorithm 1 presents the preprocess of label swapper. We first
select the data (X¢rain, , Ytrain, ) from Dipqin at rate psyqp ran-
domly to form Dy,,q). After that, we query the target classifier F'
to get the confidence scores c; of the sample (Xtrain, , Ytrain;) €
Dgwap- Then, we store the acquired confidence vector c; in
confidence vector set C. KN N is initialized with C, k,d. L,y
is initialized with pswap X || Dirain|| as the integer number of
random offset ranging from (0, n).

B. Design of Confidence Reformer

To achieve both individual and statistical indistinguishabil-
ity between members and non-members, PURIFIER reforms the
confidence scores with the confidence reformer G, which is a
CVAE.

In the training stage, G is trained on F'(x), where x belongs
to a reference dataset D,.cy. D,cy and Dy,q;;, are drawn from
the same distribution but have no overlap, which means that
D,.cy consists of non-member samples. Formally, G is trained
to minimize the objective function defined in (6).

L(G) = x~1I)E(x) [Lrec + Liid] (6)
where p,(x) represents the conditional probability of x for
samples in D,..y, L. is the reconstruction loss function (i.e.,
MSE loss), which is defined in (7), L}, is the Kullback-Leibler
divergence loss function, which is defined in (8).

Lree = R(G(F(x)|I), F(x)) @)
where [ represents the predicted label of x by F'.
D
Lya=—05%x> (1+log(o7) —pi—0}) (8
i=1

where p and o2 are the mean and variance parameters in the
latent space of G.

The training process of confidence reformer is summarized
in Algorithm 2. For each epoch, we first draw a batch of data
samples {(x;,y;)}7_; from the reference set D,.s. Then we
query the target classifier /" to obtain the confidence scores c;,
and the predicted label [;. After that, the loss is calculated on
the objective function 6, and gradient descent is used to update
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Algorithm 2: Training Process of Confidence Reformer.

Input: The reference dataset D, ., the target classifier
I, size of batch g, number of epochs P,
learning rate 7, label loss coefficient A

Output: confidence reformer Gg

1 6 = initialize(Gy) ;
2 forp=1to P do

3 | foreach batch {(x,y;)}]_; C Drey do

4 ¢ = F(Xj);

5 l; = argmax(c;) ;

6 g= V@% Z?:1(£rec + Lia); > refer Eq(6)
6 = updateParameters(n, 0, g);

7 end

8 end

9 return Gy

the parameters 6 of confidence reformer G. G is trained on
D,..y, which consists of non-member samples. Consequently,
G assimilates the characteristic pattern of non-member samples.
In the inference stage, G processes the input confidence vector
H (c;), with the modified label I' = argmax(H(c;)) as the
condition. H (c;) first traverses through the encoder, resulting
in its mapping to the encoded latent space r. Subsequently, the
decoder maps the confidence vector back from the latent space r,
and obtains the reformed confidence vector G(H (c;)[l'). In this
reforming process, the reconstruction loss L. encourages the
decoder of G to generate confidence vectors that have a similar
pattern as the non-member ones on D,..; (non-members) with
the same label. Thus, the confidence vector of the member sam-
ple integrates the characteristics of the non-member samples.
In general, G mitigates individual variations in c;, ultimately
achieving individual indistinguishability.

In addition, to mitigate the difference in statistical distribution
between members and non-members, confidence reformer G
introduces Gaussian noises in the latent space p, o, where
the label I’ is used as the condition. Despite the potential for
these noises to amplify the reconstruction error, G adaptively
learns a robust latent representation capable of preserving the
statistical distribution of non-members of label . During the
inference process, the added noises break down the clustering of
confidence scores on members, while the decoder generates the
reformed versions that are similar to the ones on D,.. ;, mitigating
the difference in statistical distribution.

C. Defense Process of PURIFIER

Following the pre-processing by the label swapper and the
training of the confidence reformer, we can perform defense
with the label swapper H and the trained confidence reformer G.
H is employed to determine whether a given confidence score
belongs to a member sample and to execute label swapping.
Then, G is responsible for the transformation of these confidence
scores.

As shown in Algorithm 3, at the inference stage, given an
input sample x, we first query the target classifier F' to obtain
the confidence scores c and the predicted label /. Then, we feed ¢

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on June 09,2025 at 07:23:37 UTC from IEEE Xplore. Restrictions apply.



2694

Algorithm 3: Inference Process of PURIFIER.

Input: The input sample x, the target classifier F, the
trained confidence reformer Gy, the function
knn(-), a helper function swap(-) that takes a
vector as input and swap the largest element
with another element, the offset of the false
label list L,

Output: The purified confidence score ¢,urified

¢+ F(x);

[ = argmax(c);

index = knn(c); > Start of label swapper

if index < pswap * || Dirain|| then

| of fset = Loglindex];
else
| of fset =0;

end

' = (of fset + 1) mod n;

¢ =swap(c,1,1);

Cpurified = GH (C / |l,);

return Cpyrified

o 0 g S Ul R W N =

=
(=)

> End of label swapper
> process of CVAE

=
N =

into the label swapper H. H determines whether c is close to the
confidence vector of a member sample by using kNN. If so, H
regards it as the member sample and swaps the maximum score
with another score. At this stage, c is indistinguishable in the
prediction label. Next, we feed c into the confidence reformer
G, where the condition is the label I, to obtain the purified
confidence vector Cpyrifica. This ensures indistinguishability
in terms of individual shape and statistical distribution. Finally,
PURIFIER returns the purified confidence scores Cpyri fied-

V. EXPERIMENTS

In this section, we conduct experiments on different popular
datasets and models to verify the effectiveness of PURIFIER.
The experiments are conducted on a PC with four Titan XP
GPUs (12GBytes graphic memory), 128 GBytes memory, and
an Intel Xeon E5-2678 CPU. We first describe the dataset
and model configurations in detail. We then conduct a series
of experiments aimed at demonstrating that: (1) PURIFIER is
effective in defending against MIAs, the model inversion attack,
and the attribute inference attack, outperforming other defense
methods. (2) With the defense provided by PURIFIER, we achieve
individual, statistical, and label indistinguishability. (3) Further-
more, We evaluate the computation overhead of PURIFIER. (4)
Finally, we conduct three additional experiments to explore the
impact of the order of the label swapper and confidence reformer,
the size of the reference set, and noisy member samples on the
performance of PURIFIER.

A. Dataset and Model Settings

1) Dataset Settings: We use CIFAR10, Purchase100, Face-
Scrub530, CIFAR100, Texas, Location, and UTKFace datasets
which are commonly used in previous works on data inference
attacks.
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TABLE I
DATA ALLOCATION

Dataset Dq Do Dsg
CIFAR10 50,000 5,000 5,000
Purchasel00 20,000 20,000 20,000
FaceScrub530 30,000 10,000 8,000
CIFAR100 50,000 5,000 5,000
Texas 10,000 10,000 10,000
Location 1,600 1,600 1,600
UTKFace 10,000 5,000 5,000
A dataset is divided into a training set D,, a reference set D,, and a test
set Ds.

CIFARIO [1], [5], [7], [10]: This dataset serves as a bench-
mark for evaluating image recognition algorithms in machine
learning. It comprises 60,000 color images, each with dimen-
sions of 32 x 32 x 3. The dataset is divided into ten classes,
each class symbolizing an object (e.g., airplane, car, etc.).

Purchasel00 [1], [4], [5], [7]: This dataset is derived from
Kaggle’s “acquired valued shopper” challenge.! We use the
preprocessed and simplified version [1]. The dataset consists
of 197,324 data records with each record having 600 binary
features. The dataset is clustered into 100 classes.

FaceScrub530 [12]: The dataset contains URLs of 100,000
images of 530 people. We obtain the preprocessed and simplified
version of this dataset from [12] which has 48,577 facial images
and each image is resized to 64 x 64.

CIFARIOO [1], [10]: The dataset serves as a benchmark in
machine learning for the evaluation of image recognition algo-
rithms. It comprises 60,000 color images, each with dimensions
of 32 x 32 x 3. The dataset is divided into 100 classes, with
each class containing 600 images.

Texas [1], [32]: The data utilized in this study originates from
the web link information of the University of Texas, USA. This
dataset encompasses web pages and the hyperlink relationships
that exist between them. We use the same dataset as previous
works, which is clustered with 6,169 attributes into 100 classes
and contains a total of 67,330 samples.

Location [1], [32]: This dataset is derived from the publicly
accessible set of mobile users’ location “’check-ins” within the
Foursquare social network, specifically limited to the Bangkok
region and gathered between April 2012 and September 2013.
The Location record encompasses 446 attributes, which have
been clustered into 30 classes, comprising a total of 5,010
samples.

UTKFace [13], [33]: This dataset contains 20,606 images of
individuals with age, gender, and race annotations. Each image
isresized to 50 x 50. We train the classifier to predict the gender
attribute and use the race attribute as the sensitive attribute in our
experiments.

Table I presents the data allocation in our experiments. We
divide each dataset into the training set D1, the reference set Do
and the test set D3 randomly. They have no overlap with each
other. Then, we randomly divide D; and D3 into two halves,
denoted as Di, D?, Di, D3. We repeatedly sample D1, D?

Thttps://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
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TABLE II
TARGET CLASSIFIER SETTING

Model o Learnin, Train

Dataset Architecture Optimizer Rate g Epoch
CIFARIO DenseNet121 [35] Adam 0.1 300
Purchase100 Four FC layers Adam 0.001 100
FaceScrub530 Same as [12] Adam 0.0002 150
CIFAR100 DenseNet121 [35] SGD 0.1 300
Texas Five FC layers Adam 0.001 20
Location Three FC layers Adam 0.01 30
UTKFace Similar as [13] Adam 0.001 30

(max-pool — avg-pool)
TABLE III

TYPES AND NUMBERS OF MODELS USED IN DIFFERENT ATTACKS, AS WELL AS
THE DATASETS FOR TRAINING AND TESTING MODELS

Attack Shadow Model Inference Model
Num.  Dirain Diest  Num.  Dirain Diest
NSH 0 NA.  NA. 1 Di+DY  D2+DZ
Mileaks 1 DD D2+D? 1 Di+Dl  D2+D?
Adaptive 1 D+D}  D?+D? 1 pl+Dl  D2ipDY
BlindMI 0 N.A. N.A 0 N.A.  D2+DZ
Gap 0 N.A. N.A. 0 N.A.  D2+DZ
Transfer 1 Di+D} D%+D3 0 N.A. D2+D2’
Boundary 0 N.A. N.A. 0 N.A. DiangQ’
Fp 16 D1l +D:} DiJng 0 N.A D£+D%
Enhanced 16 D{+D; D?+Dj 0 N.A D%+D3
Model Inversion 0 N.A. N.A. 1 D95 5 DY-2
Attribute Inference 0 N.A. N.A. 1 D? Dg

Note that some attacks do not use models but algorithms, and we also report the datasets used
in inference.

to the number of samples of D}, D?, denoted as D3, D3 In
addition, we randomly sample 80% from D1, D5, and D3 to
form D(l);%?’, and the remaining 20% of Dy and D3 to form
Dg;g. For the target model, we use D; for training and Dj
for testing, which means D; samples are members and D3 are
non-members. In the membership inference attack and attribute
inference attack, we assume that the attacker has access to half
of the members (i.e., D}). Therefore, for MIA, D} and DY
are used to train the attack model, and D% and D%’ are used
for testing. For the attribute inference attack, D} is used for
training and D3 is used for testing. In the model inversion attack,
for the FaceScrub530 classifier, the attacker uses a CelebA [34]
dataset to train the inversion model, following the same setting
in [12]. For other classifiers, the attacker uses D?:gg to train
the inversion model and D33 to test the inversion error. We use
Dy as the reference dataset for defenses that require training
additional defense models, e.g., MemGaurd [17], Min-Max [4]
and our approach.

2) Target Classifier Setting: We use the same model archi-
tectures as in previous work [4], [7], [12] to train the target
classifiers. Table II presents the model architecture, optimizer,
learning rate, and number of training epochs for the target
classifier corresponding to 7 datasets. The training set is Dy
and the test set is Ds.

3) Attack Setting: We conduct 9 member inference attacks,
1 model inversion attack, and 1 attribute inference attack in
our experiments. Table III summarizes the types and numbers
of models used in different attacks, as well as the datasets for
training and testing models. Note that some attacks do not use
models but algorithms, and we also report the datasets used in
inference.

NSH [4]: We use an inference classifier with the same model
architecture as [4]. The classifier is trained with Adam optimizer
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for 50 epochs. For CIFAR10, FaceScrub530 and CIFAR 100, the
learning rate is 0.001. For Purchase100, Texas and Location, the
learning rate is 0.01.

Mlleaks [5]: We train the shadow model with the same
architecture and related settings as the target classifier. The
membership classifier is a Multi-Layer Perception (MLP) with
two Fully Connected (FC) layers. The optimizer is Adam. The
learning rate for CIFAR10 is 0.01, while it is reduced to 0.0001
for Texas. For other datasets, the learning rate is 0.001. The
training epochs for CIFAR10 and Purchase100 are set to 50. For
other datasets, the number of training epochs is 100.

Adaptive [5]: This is an adaptive version of the Mlleaks
attack, where the adversary is assumed to have access to all
the information about the defender’s PURIFIER and its reference
data Ds. Hence, the input of the membership classifier is the
purified confidence score vectors. The rest of the settings remain
consistent with Mlleaks.

BlindMI [9]: We consider BlindMI-DIFF-w/, where the at-
tacker is assumed to know the softmax output of the target
classifier and the ground truth of the corresponding sample. We
use the softmax output to generate non-member samples. The
source code of [9] is adopted to implement the attack.

Gap [7]: No additional models are required.

Transfer [7]: The shadow models we use have the same archi-
tecture as the target model. The optimizer is Adam. The learning
rate is 0.1 for CIFAR10 and CIFAR100, 0.0001 for Location and
0.0002 for FaceScrub530, and 0.001 for the other datasets. The
number of training epochs for CIFAR10 and CIFAR100 is set
to 300, while it is 150 for FaceScrub530. For other datasets, the
number of training epochs is 100. Three thresholds are used in
previous work, and we use the one that performs best.

Boundary [7]: We use HopSkipJump noise with a total of 300
evaluations per sample to ensure the attack performance is stable.
We report the results on the Lo norm. Due to the high query
complexity, we report the results on a subset of 500 samples.

MIA from First Principles (FP) [10]: This attack provides two
algorithms: online and offline, and we use the latter. We train 16
shadow models, each of which shares the same architecture as
the target model. The learning rate is 0.001 for Purchase100
and Texas, 0.0002 for FaceScrub530, 0.01 for Location, and 0.1
for the other datasets. The number of training epochs for Pur-
chase100 and CIFAR100 is set to 100, while it is 150 for Face-
Scrub530, 120 for CIFAR10, 20 for Texas, and 30 for Location.

Enhanced MIA (Enhanced) [11]: This paper proposes 4
attack methods, namely S, P, R, and D. We adopt method D and
train 16 shadow models. The training settings are the same as FP.

Model inversion attack [12]: The source code of [12] is
adopted to implement this attack.

Attribute inference attack [13]: The race classifier is an MLP
with three FC layers. We use the Adam optimizer with a learning
rate of 0.001. The number of training epochs is set to 50.

4) Defense Setting: We implement PURIFIER and reproduce
6 defense methods. Table IV summarizes the types and numbers
of models used in different defenses and the datasets for training
and testing models.

PURIFIER . For kNN in the label swapper H, we set k=1
for all datasets, d=1e-5 for CIFAR10 and Purchasel00, le-
4 for Texas and Location, 5*1e-5 for CIFAR100, le-7 for
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TABLE IV
TYPES AND NUMBERS OF MODELS USED IN DIFFERENT DEFENSES AND THE
DATASETS FOR TRAINING AND TESTING MODELS

Shadow Model Defense Model

Defense Num.  Dirain Diest Num.  Dirgin  Dtest
PURIFIER 0 N.A. N.A. 1 Do N.A.
Min-Max 0 N.A. N.A. 1 Dy D3
MemGaurd 1 Di+D}  D%+D3 0 N.A. D3
Model-Stacking 2 D1 Ds 1 D+ D3
MMD Defense 0 N.A. N.A. 1 D1 Ds
SELENA 25 Dy D3 1 Dy D3
Relax-Loss 0 N.A. N.A. 1 D1 D3

FaceScrub530, and le-11 for UTKFace. We use CVAE to imple-
ment the confidence reformer G. It has the layer size of [20, 32,
64,128,2,128, 64, 32,20] for CIFAR10, [200, 128,256, 512,20,
512,256, 128, 100] for Purchase100, Texas and Location, [ 1060,
512, 1024, 2048, 100, 2048, 1024, 512, 1060] for FaceScrub530
and CIFAR100. The number of training epochs is 300 for all
datasets. We use Adam optimizer with the 1 earning rate 0.001
for CIFAR10, 0.0001 for Purchase100, Texas and Location, and
0.0005 for Facescrub530 and CIFAR100.

Min-Max: As Section II-B mentioned, for the sake of the
model utility and membership privacy, A is introduced to balance
two optimization targets. We set A = 0.5 for all datasets. The
number of epochs of the whole training phase for Location and
Purchase100 is set to 100, while it is 150 for FaceScrub530
and CIFAR10, 300 for CIFAR10, and 50 for Texas. We use an
inference model with the same model architecture as [4]. The
attack model and target model are trained with Adam optimizer
for 76 sub-epochs in each epoch. For FaceScrub530, the learning
rate is 0.0002. For Texas, the learning rate is 0.0001. And others
are 0.001.

MemGuard: We adopt the same attack binary classifier in the
Mlleaks attack to distinguish the confidence vectors from the
member and the non-member. Gradient descent with normal-
ized gradient is conducted with hyper-parameter ¢; = 1, ¢y =
10, c3 = 0.1 to generate perturbation vectors on member vec-
tors.

Model-Stacking: We train two shadow models with the same
architecture and related settings as the target classifier. Then, an
MLP with three FC layers is trained to integrate the outputs of
the shadow models to obtain the final prediction. The optimizer
for the MLP is Adam, with a learning rate set at 0.01 and a total
of 200 training epochs. Dy is randomly divided into three equal
parts and used to train three models respectively.

MMD Defense: This defense employs MMD as a regularizer
in the loss function, and we set the weight of MMD in the loss
function to le-5.

SELENA: We train 25 shadow models and a distillation model
with the same architecture and related settings as the target
classifier. Each sample is put into only 10 models as a component
of the training dataset. In the training of shadow models, We
apply SGD optimizer with a learning rate of 0.1. The same
training strategy is adopted in the distillation process.

Relax-Loss: The pivotal parameter is the target loss thresh-
old, denoted as «, which balances the loss levels between
member and non-member data during the training phase. For
CIFAR10, CIFAR100, Purchase100, and Texas, we maintain o
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at its original setting. However, for datasets not included in the
original paper, we adjust v accordingly. For FaceScrub530, we
set & = 1.0. For Location and UTKFace, we set o« = 0.8.

5) Metric Setting: We employ the following metrics to eval-
uate the defense performance, inversion error, and efficiency of
defense methods.

Classification Accuracy: This metric is assessed on both the
training and test sets of the target classifier. It reflects the efficacy
of the target classifier in the classification task.

Inference Accuracy: This represents the accuracy of the at-
tacker’s predictive model in determining the membership and
the additional sensitive attribute of input samples. For MIA,
since the number of members and non-members in the test set
is the same, the higher proximity of the accuracy value to 50%
signifies a diminished attack effect.

Area Under Curve (AUC): AUC is defined as the area under
the Receiver Operating Characteristic (ROC) curve. This metric
is employed to assess the member inference effect of Transfer
and Boundary attacks. The closer the AUC value is to 0.5, the
worse the inference effect.

Inversion Error: The inversion error is quantified by the
mean squared error between the original input sample and the
reconstruction.

Efficiency: Following [12], we measure the efficiency of a
defense method by reporting its training time and testing time
relative to the original time required by the target classifier.

B. Effectiveness of PURIFIER

In this section, we assess the defensive effectiveness of PURI-
FIER against a variety of data inference attacks and compare it
with existing defense techniques.

1) Effectiveness Against Membership Inference Attack: Ta-
ble V presents the defense performance of PURIFIER against
nine different MIAs. For each dataset, PURIFIER can reduce
the accuracy or AUC of membership inference attacks while
maintaining the utility of the classifier. For example, on Face-
Scrub530, PURIFIER has almost no influence on the classifier test
accuracy (the test accuracy only drops by 0.6%), but it decreases
the attack accuracy of nine MIAs to about 50%, and the AUC
is closer to 0.5, which means that PURIFIER has a significant
defensive effect. It is noteworthy that the test accuracy of most
datasets drops within 0.7%, only CIFAR100’s test accuracy
drops by 2.02%. This alteration in test accuracy can be attributed
to the fact that the k£ NN of the label swapper may mistakenly
classify non-member samples as members, thereby modifying
the predicted label.

In addition, Table V also shows the experimental results of
six other defense methods. It can be seen that in most cases, the
defense effect of PURIFIER is the best, which shows that PURIFIER
is better than other defense methods in concealing member
privacy information. For example, on FaceScrub530, PURIFIER
achieves the best defense effect on eight attacks. Relax-Loss has
a better defense effect on BlindMI, but the corresponding attack
accuracy is only 0.08% lower than PURIFIER. For Adaptive,
Gap, and Transfer attacks, PURIFIER shows the best defense
performance on all datasets.
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TABLE V
DEFENSE PERFORMANCE OF PURIFIER AND OTHER DEFENSE METHODS AGAINST VARIOUS ATTACKS

Utility Membership Inference Attack Accuracy/AUC Inversion Error
Dataset Defense Train acc.  Test acc. NSH Mlleaks  Adaptive  BlindMI Label only aftacks Fp Enhanced L2 norm
Gap Transfer  Boundary
None 99.99% 95.92% 56.03% 56.26% N.A. 54.76% 52.04% 0.5186 0.5214 53.40% 53.91% 1.4357
Purifier 95.93% 95.64%  51.49%  50.00% 50.00% 50.05%  50.24% 0.4973 0.4651 50.54% 50.00% 1.4950
Min-Max 99.40% 94.38%  5397%  52.93% 52.75% 53.52%  52.51% 0.5253 0.5011 53.03% 54.30 % 1.4770
CIFAR10 MemGuard 99.99% 95.92%  53.63%  52.24% 52.07% 52.03%  52.04% 0.5190 0.5029 53.12% 53.97% 1.4439
Model-Stacking 95.80% 92.12%  51.93%  51.01% 50.99% 52.69%  51.84% 0.5205 0.5008 50.90% 50.95% 1.4723
MMD Defense 99.99% 87.44%  59.50%  57.60% 57.32% 53.92%  56.28% 0.5365 0.5437 56.21% 59.13% 1.4414
SELENA 98.40% 93.90%  52.14%  52.35% 52.21% 51.08%  52.25% 0.5097 0.4896 50.63% 51.50% 1.4350
Relax-Loss 99.29% 87.42%  50.07%  55.27% 58.94% 54.77%  55.94% 0.5087 0.5605 50.88% 50.85% 1.4413
None 100.00% 84.36% 70.36% 64.43% N.A. 69.82 % 57.82% 0.5566 N.A. 65.37% 62.72% 0.1426
Purifier 84.55% 83.80%  50.08%  50.00% 50.00% 49.81%  50.64% 0.5235 N.A. 50.58% 50.10 % 0.1526
Min-Max 99.89% 82.03%  65.13%  63.95% 64.06% 57.39%  58.93% 0.5760 N.A. 56.26% 54.82% 0.1428
Purchase100 MemGuard 100.00% 84.36%  6228%  57.86% 57.74% 61.35%  57.82% 0.5752 N.A. 65.23% 62.78% 0.1426
Model-Stacking 81.84% 69.68%  61.16%  55.53% 55.28% 60.36%  56.08% 0.5806 N.A. 53.73% 52.90% 0.1472
MMD Defense 100.00% 82.65%  69.48%  69.89% 69.13% 66.62%  58.67% 0.5718 N.A. 66.44% 64.35% 0.1439
SELENA 83.24% 79.53%  51.90%  52.97% 52.84% 53.04%  51.83% 0.5602 N.A. 50.16% 50.50% 0.1440
Relax-Loss 99.50% 82.17%  52.60%  61.31% 62.30% 57.84%  58.67% 0.5442 N.A. 50.47% 50.08% 0.1435
None 100.00% 77.68% 69.34% 75.04% N.A. 50.40% 61.16% 0.5868 0.7739 71.68% 67.96% 0.0114
Purifier 77.72% 77.06% 50.89% 49.91% 50.17% 50.08% 50.41% 0.5385 0.4745 50.16% 50.00% 0.0454
Min-Max 98.99% 68.31%  65.56%  69.84% 69.13% 61.16%  65.34% 0.6428 0.6430 70.40% 69.36% 0.0182
FaceScrub530 MemGuard 100.00% 77.68%  6248%  60.06% 59.64% 62.42%  61.16% 0.6075 0.6418 71.69% 67.80% 0.0117
Model-Stacking 86.30% 57.05%  62.00%  51.86% 51.74% 60.62%  64.63% 0.5994 0.6379 50.62% 52.26% 0.0417
MMD Defense 100.00% 77.38%  64.88%  67.95% 67.38% 63.55%  61.31% 0.6034 0.6783 71.07% 67.00% 0.0111
SELENA 81.06% 72.05%  51.68%  51.23% 51.89% 54.05%  50.50% 0.5733 0.5844 50.44% 52.01% 0.0131
Relax-Loss 99.52% 75.24%  51.90%  70.64% 70.75% 50.00%  62.14% 0.6335 0.7353 53.51% 59.94% 0.0109
None 99.98% 66.36% 76.98% 73.78% N.A. 76.34% 76.86% 0.6495 0.6668 64.81% 72.92% 0.9073
Purifier 66.37% 64.34% 55.03% 50.02% 50.00% 50.02% 50.70% 0.5851 0.5042 50.36% 50.53% 0.9378
Min-Max 98.27% 68.36%  60.19%  61.98% 61.66% 60.15%  64.96% 0.6713 0.6329 58.10% 61.00% 0.9106
CIFAR100 MemGuard 100.00% 6891%  58.17%  57.45% 56.96% 59.76%  65.53% 0.6624 0.5877 61.46% 68.07% 0.9123
Model-Stacking 65.53% 60.04%  57.30%  59.11% 58.75% 58.82%  52.75% 0.6672 0.5623 50.28% 50.42% 0.9203
MMD Defense 100.00% 67.50%  57.89%  57.22% 56.97% 65.31%  66.25% 0.7487 0.6532 73.67% 83.19% 0.9231
SELENA 78.00% 62.10%  50.32%  50.42% 50.33% 57.59%  57.95% 0.6227 0.4982 50.71% 50.64% 0.9184
Relax-Loss 99.37% 46.64%  53.14%  57.43% 60.81% 56.24%  76.37% 0.6522 0.7795 50.40% 50.49% 0.9266
None 79.17% 4791%  66.37%  58.93% N.A. 53.88%  69.02% 0.6334 N.A 59.53% 63.18% N.A.
Purifier 47.98% 47.59% 50.00% 45.89% 50.00% 49.91% 50.25% 0.5996 N.A 50.03% 50.00% N.A.
Min-Max 75.51% 49.05%  54.12%  57.03% 56.89% 53.77%  62.23% 0.6326 N.A 52.56% 53.12% N.A.
Texas MemGuard 75.04% 49.88%  55.80%  54.99% 56.75% 53.09%  62.58% 0.6557 N.A 56.81% 59.41% N.A
Model-Stacking 53.18% 47.02%  51.20%  50.08% 56.93% 52.86%  53.08% 0.6424 N.A 52.52% 53.08% N.A
MMD Defense 77.32% 50.01%  56.96%  58.39% 59.73% 67.40%  63.66% 0.6570 N.A 63.48% 70.74% N.A
SELENA 77.90% 55.25%  54.40%  51.00% 57.79% 58.04%  61.33% 0.6261 N.A 50.96% 52.17% N.A
Relax-Loss 85.50% 48.19%  53.05%  58.48% 59.19% 47.35%  68.66% 0.6201 N.A 50.26% 50.01% N.A
None 100.00% 59.44% 82.37% 84.00% N.A. 76.13% 71.13% 0.6513 N.A 79.72% 77.12% N.A
Purifier 59.50% 58.88%  53.69%  50.31% 51.12% 50.75%  54.75% 0.6269 N.A 50.41% 51.19% N.A
Min-Max 99.85% 56.49%  59.52%  58.38% 59.71% 65.08%  71.68% 0.6772 N.A 58.00% 59.91% N.A
Location MemGuard 100.00% 58.44%  61.21%  58.28% 59.13% 65.22%  70.78% 0.6960 N.A 69.31% 67.59% N.A
Model-Stacking 70.29% 57.82%  53.24%  51.88% 52.66% 67.41%  56.24% 0.6805 N.A 53.66% 55.59% N.A
MMD Defense 100.00% 59.96%  63.25%  54.77% 56.32% 71.29%  70.02% 0.6654 N.A 81.03% 78.34% N.A
SELENA 77.90% 55.25%  54.40%  51.00% 52.23% 65.86%  61.33% 0.6509 N.A 50.75% 55.37% N.A
Relax-Loss 99.50% 58.94%  58.56%  69.94% 70.00% 77.94%  70.28% 0.6480 N.A 50.31% 50.56% N.A

Results of the Transfer and boundary attack are reported in AUC [7]. Note that N.A. means that the setting is not applicable.

PURIFIER also outperforms other defenses in terms of the
defensive-practical trade-off. Model-Stacking and Relax-Loss
demonstrate superior defense effects compared to PURIFIER in
certain instances. For instance, on CIFAR10, NSH’s accuracy
when targeting Relax-Loss is 1.42% lower than when attacking
PURIFIER, yet the corresponding test accuracy decreases by
8.22%. On Location, FP attacks Model-Stacking with a 0.45%
lower accuracy than PURIFIER, while the test accuracy drops by
1.06%. The key to PURIFIERs ability to preserve utility lies in its
emphasis on the private information of member samples, thereby
bringing members closer to non-members while minimally af-
fecting non-member samples. In contrast, other defense methods
influence both members and non-members. For instance, MMD
employs a set regularizer to reduce the classification accuracy
disparity between members and non-members.

2) Effectiveness Against Model Inversion Attack: We further
investigate the defense performance of PURIFIER against the
model inversion attack. Table V presents the inversion errors of
the model inversion attack based on different defense methods
on CIFAR10, Purchase100, FaceScrub530, and CIFAR100. We
can see that the inversion errors of PURIFIER on the four datasets
are the highest, indicating that PURIFIER can effectively defend
against the model inversion attack. For instance, the inversion
loss on FaceScrub530 is approximately 4 times that of no defense

(i.e., from 0.0114 to 0.0454). Note that the impact of the model
inversion attack on CIFAR10, Purchase100 and CIFAR100 is
less than that on FaceScrub530. This is because the inversion
attack does not work well even without any defense on these
classifiers.

We believe that the efficacy of PURIFIER in defending against
model inversion can be attributed to the information loss caused
by alterations in the distribution of the confidence vector. The
greater the impact of the defense method on the distribution
of the confidence vector, the better the defensive effect against
model inversion. Beyond PURIFIER, Model-Stacking integrates
multiple models to generate the final prediction, resulting in
a significant change in the confidence vector compared to a
single model’s prediction. Consequently, its defensive efficacy
(the inversion loss is 0.0417) ranks second only to PURIFIER (the
inversion loss is 0.0454). However, Min-Max and Relax-Loss
focus on the loss function, MemGuard introduces noise into the
confidence vector, MMD concentrates on classification accu-
racy, and SELENA yields a model identical to the target model
structure. Therefore, these methods exert limited influence on
the confidence vector of an individual sample (the inversion loss
only increases by 0.0017 at most).

Furthermore, Fig. 3 illustrates the image reconstruction re-
sults of the model inversion attack based on different defense
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Fig. 3. Model inversion attack against the FaceScrub530 classifier defended

by different approaches.

methods on FaceScrub530. We measure the inversion quality by
reporting the average facial similarity score to the ground truth
using Microsoft Azure Face Recognition Service [36], which is
shown on the left side of Fig. 3. The smaller the number, the
lower the similarity between the reconstructed sample and the
original sample. It can be observed that the attacker can recon-
struct almost the same image without any defense measures.
Under the defense of PURIFIER, the similarity score between the
reconstructed sample and the original sample is the smallest (0.1
lower than No Defense), and the corresponding reconstructed
image loses a lot of details compared to the original image.
The reconstructed images of other defense methods are much
clearer than PURIFIER, especially Min-Max and SELENA, which
indicates that PURIFIER is more effective in defending against the
model inversion attack than other methods.

3) Effectiveness Against Attribute Inference Attack: In this
section, we explore the defense effect of PURIFIER against at-
tribute inference attacks. We cannot achieve a successful at-
tribute inference attack by strictly replicating the model archi-
tecture and related settings of the UTKFace classifier mentioned
in [13]. We argue that it is challenging to infer 5 race classes
based solely on the sensitive information in the confidence vector
of length 2. Thus, we conduct an enhanced attribute inference
attack on the output vector with a length of 64, which is the last
hidden layer of the target model. Note that since PURIFIER only
modifies the model output vector, to make it applicable to the
hidden layer vector, we remove the part of PURIFIER that needs
to use the label, i.e., only use VAE to reconstruct the hidden
layer vector. Min Max, Model Stacking, MMD, SELENA, and
Relax Loss participate in the target model training process so
that the hidden layer vector can be directly extracted. MemGaurd
generates adversarial samples for the confidence vector and the
label is required, so it is not available in this experiment.

Table VI shows the experimental results under undefended
and various defense strategies. The race classes, from 0 to 4,
correspond to white, black, Asian, Indian, and others (such as
Hispanic, Latin American, and Middle Eastern), respectively.
It can be seen that except for Relax Loss, the accuracy of
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TABLE VI
ATTRIBUTE INFERENCE ATTACK AGAINST THE UTKFACE CLASSIFIER WITH
DIFFERENT DEFENSE METHODS

Attack Accuracy
Racel Race2
54.60%  26.37%
0.00% 0.00%
10.64% 6.23%
N.A. N.A.
14.15%  0.00%
0.00% 0.00%
53.44% 15.64%
75.14%  21.33%

Dataset Defense

Race0
82.08%
100.00%
93.19%
N.A.
90.47%
100.00%
83.04%
74.77%

Race3
20.36%
0.00%
9.68%
N.A.
13.20%
0.00%
12.12%
26.98%

Total
53.40%
42.40%
45.64%

N.A.
43.80%
42.40%
51.24%
55.16%

Race4
0.00%
0.00%
0.00%
N.A.
0.00%
0.00%
0.00%
1.81%

None
Purifier (VAE)
Min-Max
MemGaurd
Model-Stacking
MMD Defense
SELENA
Relax-Loss

UTKFace

TABLE VII
GAP OF THE CLASSIFIER’S CONFIDENCE IN PREDICTING THE CORRECT CLASS
(L.E., CONFI) AND THE PREDICTION UNCERTAINTY (I.E., UNCER) BETWEEN
MEMBERS AND NON-MEMBERS

Metric . Defense CIFAR10 Purchase100 FaceScrub530
Max Avg. Max Avg. Max Avg.
Confi Nqng 0.0793 0.002 0.0954  0.0082  0.6093  0.1213
Purifier 0.0057 0.0015 0.0452 0.0011 0.0023 0.0004
Uncer Nqnfe 0.0403  0.0013  0.0673  0.0076  0.5709  0.0766
Purifier 0.0037 0.0007 0.0112 0.0005 0.0029 0.0004

attribute inference attack diminishes by 4.16% ~ 13% under the
other defenses. Notably, when employing PURIFIER and MMD
for protection, the attack model consistently predicts RaceQ
for all samples, indicating a failure of the attack. PURIFIER’S
VAE reconstructs the hidden layer vector and directly alters
the hidden layer information. MMD modifies the distribution
of softmax output through regularization, indirectly impacting
the hidden layer parameters via gradient backpropagation. The
hidden layer parameters of other methods are also different from
those in the case of no defense. Consequently, these defense
techniques exhibit varying degrees of effectiveness. Relax Loss
aims to reduce the differentiation between the loss distributions
of training and testing, and alterations in the loss distribution
have little effect on the sensitive attribute information contained
in the hidden layer.

C. Indistinguishabilities in Purified Scores

In this subsection, we design more specific experiments to
analyze the influence of purified confidence scores on MIAs by
evaluating three indistinguishabilities: individual shape, statis-
tical distribution, and prediction label.

1) Individual Indistinguishability: To verify the indistin-
guishability of confidence scores between members and non-
members, we plot the confidence of the target classifier predict-
ing the correct class and the prediction uncertainty in Fig. 4,
which presents the results on three datasets: CIFAR10, Pur-
chase100, and FaceScrub530. We can observe that PURIFIER can
reduce the gap between two curves corresponding to members
and non-members respectively.

We also show the maximum gap and the average gap between
curves in Table VII. The results demonstrate that our method
can substantially decrease both the maximum and average con-
fidence gaps between the target classifier’s confidence in predict-
ing the correct class as well as the prediction uncertainty on its
members versus non-members. For instance, on FaceScrub530,
the maximum and average confidence gaps of the predicted
correct category are decreased by 0.607 and 0.1209, respectively.
On Purchase100, the maximum and average confidence gaps of
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set.

the predicted uncertainty are decreased by 0.0561 and 0.0071, re-
spectively. This demonstrates that PURIFIER effectively reduces
the individual differences between members and non-members.

2) Statistical Indistinguishability: We use t-SNE [37] to vi-
sualize the statistical distribution of confidence score vectors
in the encoder latent space of the confidence reformer on a
two-dimensional plane. Fig. 5 shows the distributional differ-
ences between members and non-members in the latent space
on CIFAR10. Asillustrated in Fig. 5(a) and (b), the latent vectors
of members are more likely to be clustered according to their
labels, while those of non-members are more scattered. Fig. 5(c)
and (d) also depict the statistical distribution of members and
non-members defended by PURIFIER in the latent space. After
being processed by PURIFIER, Gaussian noises are injected to
make the clustered member latent vectors more scattered on the
latent space and shifted to a certain extent towards the distribu-
tion of non-members of the same class. This demonstrates that
PURIFIER can reduce the statistical divergence between members
and non-members while maintaining semantic utility.

3) LABEL INDISTINGUISHABILITY: PURIFIER employs label
swapper to detect and replace the prediction label of members.
The use of label swapper results in a negligible decrease in
test accuracy, whereas replacing the labels of member samples
leads to a more significant reduction in training accuracy. This
is demonstrated in Table V, where the model’s training accuracy
closely mirrors its test accuracy. Except for CIFAR100, which
exhibits a difference of 2%, the disparities for other datasets are
approximately 1% or even less. Such label indistinguishability
significantly diminishes the efficacy of the label-only attack.
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Fig. 5. The statistical distribution of latent vectors on the CIFAR10 dataset.
Different colors stand for latent vectors with different labels. (a) and (b) depict
latent vectors of the original member and non-member confidence score vectors;
(c) and (d) depicts latent vectors of member and non-member confidence score
vectors with PURIFIER defended.

We perform the ablation study on the label swapper to verify
its effectiveness in our defense. As shown in Table VIII, we
defend the classifiers against label-only transfer attack under
three settings: no defense, defense with only confidence reformer
G, defense with label swapper H and confidence reformer G .
The results show that the AUC drops significantly with the help
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TABLE VIII
ABLATION STUDY ON THE LABEL SWAPPER

Dataset  Defense Label Only Transfer Attack
None 0.5186
CIFAR10 G 0.5069
H+d 0.4973
None 0.6495
CIFAR100 G 0.6479
H+G 0.5851

G represents the confidence reformer, and H represents the label swapper.
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Fig. 6. Efficiency of different defense methods.

of label swapper compared to those mechanisms without it, i.e.,
the AUC of CIFAR10 and CIFAR100 decreases by 0.0213 and
0.0644 respectively. Besides, the result shows that the label-only
transfer attack can achieve similar AUC among models without
defense and PURIFIER without the label swapper (the AUC of CI-
FAR10 and CIFAR100 decreases by 0.0117 and 0.0016 respec-
tively), which means that PURIFIER without label swapper fails to
alleviate the label-only attack. In conclusion, the label swapper
is indispensable for defending against label-only attacks.

D. Efficiency of PURIFIER

Fig. 6 shows the efficiency of PURIFIER in comparison with
other defenses on the Purchasel00 training and test sets. Note
that since MemGuard focuses on post-processing each predic-
tion vector of the undefended model, we omit the training time of
MemGuard in Fig. 6 and only compare its test time. The training
time (about 7 minutes) of PURIFIER is 1.07 times that of the target
classifier, which is better than most defenses such as Min-Max
(about 4 hours) and SELENA (about 29 minutes). The testing
time (52.86 seconds) of PURIFIER is 67.46 times that of the target
classifier, which is approximately 14.4 to 43.8 times that of other
defenses except MemGuard. This is because kNN computes
the distance between each input sample and all the members.
In contrast, the time spent on other processes of PURIFIER is
insignificant. Nevertheless, it can be seen that the test time of
MemGuard is 186.2 times that of PURIFIER. This is because
MemGuard has to solve a complex optimization problem to
obfuscate the prediction vector for each query, while PURIFIER
only requires a simple distance calculation. In conclusion, we
argue that the computation time of PURIFIER is acceptable.

E. Further Experiments

1) Effect of Component Order: The relative order of the con-
fidence reformer and the label swapper is also worth discussing.
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TABLE IX
DEFENSE PERFORMANCE OF DIFFERENT PLACEMENT ORDERS OF CONFIDENCE
REFORMER AND LABEL SWAPPER

Dataset Order  Train acc.  Test acc. NSH Mlleaks  BlindMI Gap
CIFAR10 P1 97.60% 95.52%  51.65%  50.26%  50.64%  50.84%
P2 95.93% 95.64% 51.49% 50.00% 50.05% 50.24%
Purchase100 P1 86.59% 82.23%  51.71%  50.09%  50.96%  51.68%
P2 84.55% 83.80% 50.08% 50.00% 49.81% 50.64%
Facescrub530 P1 77.58% 77.52% 51.56%  51.04% 50.00% 50.02%
P2 77.72% 77.06% 50.89%  49.91% 50.08% 50.41%

P1 refers to placing Confidence Reformer before Label Swapper, and P2 reversely.

As we mentioned in Section IV, the confidence reformer is
to achieve individual and statistical indistinguishability, while
the label swapper is to achieve label indistinguishability. The
independence of their functions also indicates that we can put
the label swapper before the confidence reformer or vice versa.
To investigate the effect of the order of the label swapper and
the confidence reformer on PURIFIER, we evaluate the utility
and defense performance against four attacks (NSH, Mlleaks,
BlindMI, Gap) of PURIFIER in two orders (i.e., placing the
label swapper after the confidence reformer and placing the
label swapper before the confidence reformer) on the CIFAR10,
Purchase100, and Facescrub530 datasets.

As shown in Table IX, placing the label swapper before the
confidence reformer in most cases can achieve better classifier
utility and PURIFIER defense performance. For instance, the test
accuracy of the Purchasel00 classifier is 1.57% higher than
P1 under the PURIFIER defense of P2, while the corresponding
attack accuracy drops by about 1% on average. A reasonable
explanation is that when the label swapper precedes the con-
fidence reformer, the intention to swap the output label to the
one with another confidence score becomes more diluted. Be-
cause the confidence vector, post-swap, will be reconstructed by
the confidence reformer. In other words, positioning the con-
fidence reformer after the label swapper introduces additional
randomness into the output result, thereby making the label swap
less detectable. Conversely, label swapping following the trans-
formation of the confidence vector by the confidence reformer
may destroy the conversion effect and reintroduce disparities
between members and non-members.

2) Influence of Different Reference Datasets: We also inves-
tigate the impact of the reference dataset by using different
sizes or distributions of data to train PURIFIER. Specifically, for
in-distribution data, we vary the size of D and also replace Do
with D1 . For out-of-distribution data, we use Purchase100 data
to train the PURIFIER for the CIFAR100 classifier and use Texas
data to train the PURIFIER for the Purchase100 classifier.

We demonstrate the defense performance of different
in-distribution training data of Purchase100 against three MIAs
(i.e., NSH, Mlleaks, and Adaptive) in Table X. We can see that
PURIFIER is still effective. The membership inference accuracy
drops to nearly 50% regardless of the size of Ds. PURIFIER
is robust to the size of the D5. The difference in the defense
performance is negligible as the size of Dy changes from 5,000
to 60,000. This is beneficial for the defender since one can
achieve good performance with a small reference set. When
we use the classifier’s training data D; to train the PURIFIER,
the defense performance is comparable to those on D,. For
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TABLE X
EFFECT OF THE PURIFIER’S IN-DISTRIBUTION TRAINING DATA ON THE
DEFENSE PERFORMANCE
Training set NSH  Mlleaks Adaptive
D; (5000) 50.16%  50.00% 50.68%
D (10,000)  50.02%  50.00% 50.00%
D5 (20,000)  50.08%  50.00% 50.00%
D (40,000) 50.14%  50.00% 50.00%
D (60,000) 50.02%  49.98% 50.00%
D, (20,000)  50.72%  49.93% 50.00%
The dataset is Purchase100.
TABLE XI

EFFECT OF THE PURIFIER’S OUT-OF-DISTRIBUTION TRAINING DATA ON THE
DEFENSE PERFORMANCE

Classifier =~ Purifier = NSH Mlleaks Adaptive
CIFAR100 Purchasel00 65.61% 50.02% 50.00%
Purchasel00  Texas  50.00% 50.00% 50.00%

instance, the attack accuracy of the NSH attack is 50.72%,
which is slightly higher than the results on D5 , but acceptable.

Table XI shows the effect of the out-of-distribution training
data. We can observe that for Purchase100 and Texas, although
the classifiers are trained on other datasets, the defense of
PURIFIER is still effective (mostly 50%). An exception is that the
accuracy of NSH attacking Purchase100 is 65.61%, However,
compared to 70.36% without defense, PURIFIER has a certain
defensive effect.

3) Effect of PURIFIER on Noisy Member Detection: Further-
more, we explore the ability of PURIFIER to detect noisy mem-
bers. Since the label swapper needs to determine whether an
input sample is a member, it should be robust to noise. We
perform this experiment to verify whether PURIFIER can handle
noisy samples. More specifically, PURIFIER can process a noisy
member as a member. We generate noise members by adding
Gaussian perturbation and adversarial perturbation (PGD [38])
of different magnitudes to the original member samples. We use
the detection rate as a metric, which is defined as the ratio of
noise samples that are detected as members among all noise
samples.

Fig. 7 shows the results of the detection rate varying with
perturbation magnitude on the CIFAR 10 dataset. From Fig. 7(a),
we can see that when the perturbation ¢ < le-4, PURIFIER can
maintain a detection rate of more than 95%. When € continues
to increase, the detection rate begins to drop significantly. In
practice, a perturbation that is too small may not change the
image pixel value. We choose gg?’ as the minimum perturbation
unit. This is because any alteration in pixel value exceeding
0.5 will result in a change in its integer part. If an image
pixel value is stored using rounding up, we apply a positive
perturbation. Conversely, if it is stored by rounding down, a
negative perturbation is utilized Therefore, we further intercept
curves in the range of 92> to 5= 5, which is shown in Fig. 7(b).
It can be seen that when ¢ = 255, PURIFIER can still maintain
a detection rate of 69.04% (Gaussian perturbation) and 62.38%
(PGD perturbation), which shows that PURIFIER has a certain
degree of robustness to noise members.
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Fig.7. The detection rate of PURIFIER for noisy members with added Gaussian
perturbation and adversarial perturbation on the CIFAR10 dataset. The x-axis
represents the perturbation magnitude.

Furthermore, it is noteworthy that the detection rate curves for
Gaussian perturbation and PGD perturbation are closely aligned.
This indicates that the effectiveness of PGD perturbation is not
significantly superior to that of Gaussian perturbation. This is
because the adversarial attack optimizes the perturbation dis-
tribution within a constrained perturbation range to generate
adversarial samples. Since PURIFIER directly classifies noise
samples as member samples based on Euclidean distance (i.e.,
L5 norm) within the range of € through NN, PURIFIER can work
as long as the perturbation constraint of the adversarial attack
also adheres to Ly norm. One potential adaptive attack involves
altering the perturbation constraint, such as employing the L,
norm to add perturbation when it is known that kNN uses Lo
norm. However, kNN can also adaptively modify the norm it
employs.

VI. RELATED WORKS

Inference Attacks: The inference attacks against machine
learning can be divided into model inference and data inference
attacks. In model inference attacks [20], [21], [22], [23], an
attacker could infer the parameters [22], hyper-parameters [23],
architecture [20] and functionality [21] of a target model. We
focus on data inference attacks in this paper. Xiao et al. [39]
study the adversarial reconstruction problem where they aim to
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prevent the latent representations from being decoded into the
original input data. To this end, they regularize the encoder with
an adversarial loss from a decoder. They study the face attribute
prediction model which outputs 40 binary facial attributes. Our
paper, on the contrary, studies black-box classifiers whose output
is constrained by a probability distribution (i.e., values sum up
to 1). Moreover, they do not consider the adversarial scenario
where the attacker has no access to the same data distribution as
the original training data. Jia and Gong [40] propose the adver-
sarial formulation for privacy protection. They aim at protecting
the privacy of users’ sensitive attributes from being inferred from
their public data. Our work investigates inference attacks that
leverage prediction results of machine learning models to infer
useful information about the input data.

General Membership Inference Attack: MIA 1is performed
to determine whether a given data sample is part of a target
dataset. Homer et al. [41] propose one of the first MIAs in the
biomedical setting on genomic data. Some studies also perform
MIAs on other biomedical data such as MicroRNA [42] and
DNA methylation [43]. Pyrgelis et al. [44], [45] further show
that it is possible to perform MIA on location datasets as well.
Shokri et al. [1] perform MIAs in the machine learning setting
which is the same as our work.

Secure & Privacy-Preserving Machine Learning: Many stud-
ies make use of trusted hardware and cryptographic computing
to provide secure and privacy-preserving training and use of ma-
chine learning models. These techniques include homomorphic
encryption, garbled circuits and secure multiparty computation
on private data [46], [47], [48], [49], [50], [51] and secure com-
puting using trusted hardware [52], [53]. While these methods
safeguard sensitive data from direct observation by the attacker,
they fail to prevent information leakage that may occur during
model computation. This leakage can potentially be exploited
by a variety of inference attacks.

VII. CONCLUSION

In this paper, we propose PURIFIER to defend data inference
attacks. PURIFIER learns the pattern of non-member confidence
score vectors and purifies confidence score vectors to this pattern
without getting involved with the training process of the target
model. It makes confidence vectors on members indistinguish-
able from those on non-members in terms of individual shape,
statistical distribution, and prediction label. Our extensive ex-
periments show that PURIFIER is effective in mitigating existing
data inference attacks, outperforming previous defense methods,
while imposing negligible utility loss.
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